• Title/Summary/Keyword: Variable Gain Amplifier

Search Result 89, Processing Time 0.032 seconds

A Design of High Speed Infrared Optical Data Link IC (고속 적외선 광 송수신 IC 설계)

  • 임신일;조희랑;채용웅;유종선
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.12B
    • /
    • pp.1695-1702
    • /
    • 2001
  • This paper describes a design of CMOS infrared (IR) wireless data link IC which can be used in IrDA(Infrared Data Association) application from 4 Mb/s to 100 Mb/s The implemented chip consists of variable gain transimpedance amplifier which has a gain range from 60 dB to 100 dB, AGC (automatic gain control) circuits, AOC(automatic offset control) loop, 4 PPM (pulse position modulation) modulator/demodulator and DLL(delay locked loops). This infrared optical link If was implemented using commercial 0.25 um 1-poly 5-metal CMOS process. The chip consumes 25 mW at 100 Mb/s with 2.5 V supply voltage excluding buffer amplifier. The die area of prototype IC is 1.5 mm $\times$ 1 mm.

  • PDF

A study on the Design of Gain Variable Low Noise amplifier using PCSNIM techniques for Zigbee System (Zigbee시스템에 적용 하기위해 PCSNIM 기법을 사용한 가변 이득 저잡음 증폭기 설계 연구)

  • Choi, Hyuk-Jae;Choi, Jin-Kyu;Kim, Hyeong-Seok
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2009.08a
    • /
    • pp.121-124
    • /
    • 2009
  • In this paper, the techniques and design focus of flexible gain coltrol of LAN(Low Noise Amplifier) using the TSMC 0.18um CMOS process. The design frequency set up a standard on 2.4GHz that is used in Zigbee system. The design concepts a basic Cascode LNA techniques and a swiching circuit consisted of 4 NMOS of load resistance, which convert the output impedenceby tuning on or off. The result show the gain change by NMOS operated swich. The simulation result is that Gain is 14.07dB-16.79dB and NF(Noise Figure) is 1.06dB-1.09dB.

  • PDF

dB-Linear CMOS Variable Gain Amplifier for GPS Receiver (dB-선형적 특성을 가진 GPS 수신기를 위한 CMOS 가변 이득 증폭기)

  • Jo, Jun-Gi;Yoo, Chang-Sik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.7
    • /
    • pp.23-29
    • /
    • 2011
  • A dB-linearity improved variable gain amplifier (VGA) for GPS receiver is presented. The Proposed dB-linear current generator has improved dB-linearity error of ${\pm}0.15$dB. The VGA for GPS is designed using proposed dB-linear current generator and composed of 3 stage amplifiers. The IF frequency is assumed as 4MHz and the linearity requirement of the VGA for GPS receiver is defined as 24dBm of IIP3 using cascaded IIP3 equation and the VGA satisfies 24dBm when minimum gain mode. The DC-offset voltage is eliminated using DC-offset cancelation loop. The gain range is from -8dB to 52dB and the dB-linearity error satisfies ${\pm}0.2$dB. The 3-dB frequency has range of 35MHz~106MHz for the gain range. The VGA is designed using 0.18${\mu}m$ CMOS process. The power consumption is 3mW with 1.8V supply voltage.

Design of MMIC Variable Gain LNA Using Behavioral Model for Wireless LAM Applications (거동모델을 이용한 무선랜용 MMIC 가변이득 저잡음 증폭기 설계)

  • Park, Hun;Yoon, Kyung-Sik;Hwang, In-Gab
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.6A
    • /
    • pp.697-704
    • /
    • 2004
  • This paper describes the design and fabrication of an MMIC variable gain LNA for 5GHz wireless LAN applications, using 0.5${\mu}{\textrm}{m}$ gate length GaAs MESFET transistors. The advantages of high gain and low noise performance of E-MESFETS and excellent linear performance of D-MESFETS are combined as a cascode topology in this design. Behavioral model equations are derived from the MESFET nonlinear current voltage characteristics by using Turlington's asymptote method in a cascode configuration. Using the behavioral model equations, a 4${\times}$50${\mu}{\textrm}{m}$ E-MESFET as a common source amplifier and a 2${\times}$50${\mu}{\textrm}{m}$ D-MESFET as a common gate amplifier are determined for the cascode amplifier. The fabricated variable gain LNA shows a noise figure of 2.4dB, variable gain range of more than 17dB, IIP3 of -4.8dBm at 4.9GHz, and power consumption of 12.8mW.

Ka-Band Variable-Gain CMOS Low Noise Amplifier for Satellite Communication System (위성 통신 시스템을 위한 Ka-band 이득제어 CMOS 저잡음 증폭기)

  • Im, Hyemin;Jung, Hayeon;Lee, Jaeyong;Park, Sungkyu;Park, Changkun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.8
    • /
    • pp.959-965
    • /
    • 2019
  • In this paper, we design a low noise amplifier to support ka-band satellite communication systems using 65-nm RFCMOS process. The proposed low noise amplifier is designed with high-gain mode and low-gain mode, and is designed to control the gain according to the magnitude of the input signal. In order to reduce the power consumption, the supply voltage of the entire circuit is limited to 1 V or less. We proposed the gain control circuit that consists of the inverter structure. The 3D EM simulator is used to reduce the size of the circuit. The size of the designed amplifier including pad is $0.33mm^2$. The fabricated amplifier has a -7 dB gain control range in 3 dB bandwidth and the reflection coefficient is less than -6 dB in high gain mode and less than -15 dB in low gain mode.

A CMOS RF Power Detector Using an AGC Loop (자동 이득제어 루프를 이용한 CMOS RF 전력 검출기)

  • Lee, Dongyeol;Kim, Jongsun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.11
    • /
    • pp.101-106
    • /
    • 2014
  • This paper presents a wide dynamic range radio-frequency (RF) root-mean-square (RMS) power detector using an automatic gain control (AGC) loop. The AGC loop consists of a variable gain amplifier (VGA), RMS conversion block and gain control block. The VGA exploits dB-linear gain characteristic of the cascade VGA. The proposed circuit utilizes full-wave squaring and generates a DC voltage proportional to the RMS of an input RF signal. The proposed RMS power detector operates from 500MHz to 5GHz. The detecting input signal range is from 0 dBm to -70 dBm or more with a conversion gain of -4.53 mV/dBm. The proposed RMS power detector is designed in a 65-nm 1.2-V CMOS process, and dissipates a power of 5 mW. The total active area is $0.0097mm^2$.

A Study on Fabrication and Performance Evaluation of Wideband 2-Mode HPA for the Satellite Mobile Communications System (이동위성 통신용 광대역 2단 전력제어 HPA의 구현 및 성능평가에 관한 연구)

  • 전중성;김동일;배정철
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.3
    • /
    • pp.517-531
    • /
    • 1999
  • This paper presents the development of the 2-mode variable gain high power amplifier for a transmitter of INMARSAT-M operating at L-band(1626.5-1646.5 MHz). This SSPA(Solid State Power Amplifier) is amplified 42 dBm in high power mode and 36 dBm in low power mode for INMARSAT-M. The allowable error sets +1 dBm of an upper limit and -2 dBm of a lower limit, respectively. To simplify the fabrication process, the whole system is designed by two parts composed of a driving amplifier and a high power amplifier, The HP's MGA-64135 and Motorola's MRF-6401 are used for driving amplifier, and the ERICSSON's PTE-10114 and PTF-10021 are used the high power amplifier. The SSPA was fabricated by the circuits of RF, temperature compensation and 2-mode gain control circuit in aluminum housing. The gain control method was proposed by controlling the voltage for the 2-mode. In addition, It has been experimentally verified that the gain is controlled for single tone signal as well as two tone signals. The realized SSPA has 42 dB and 36 dB for small signal gain within 20 MHz bandwidth, and the VSWR of input and output port is less than 1.5:1 The minimum value of the 1 dB compression point gets 5 dBm for 2-mode variable gain high power amplifier. A typical two tone intermodulation point has 32.5 dBc maximum which is single carrier backed off 3 dB from 1 dB compression point. The maximum output power of 43 dBm was achieved at the 1636.5 MHz. These results reveal a high power of 20 Watt, which was the design target.the design target.

  • PDF

A study on the Design of Gain Variable Low Noise amplifier for Zigbee System (Zigbee시스템에 적용 가능한 Gain-Variable LNA 설계 연구)

  • Choi, Hyuk-Jae;Ko, Jae-Hyeong;Choi, Jin-Kyu;Kim, Koon-Tae;Park, Jun-Hong;Yun, Sun-Woo;Kim, Hyeong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1597_1598
    • /
    • 2009
  • In this paper, the techniques and design focus of flexible gain coltrol of LAN(Low Noise Amplifier) using the TSMC 0.18um CMOS process. The design frequency set up a standard on 2.4GHz that is used in Zigbee system. The design concepts a basic Cascode LNA techniques and a swiching circuit consisted of 4 NMOS of load resistance, which convert the output impedenceby tuning on or off. The result show the gain change by NMOS operated swich. The simulation result is that Gain is 10.23~12.96dB and NF(Noise Figure) is 1.41~1.47dB.

  • PDF

A Gate-Leakage Insensitive 0.7-V 233-nW ECG Amplifier using Non-Feedback PMOS Pseudo-Resistors in 0.13-μm N-well CMOS

  • Um, Ji-Yong;Sim, Jae-Yoon;Park, Hong-June
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.4
    • /
    • pp.309-315
    • /
    • 2010
  • A fully-differential low-voltage low-power electrocardiogram (ECG) amplifier by using the nonfeedback PMOS pseudo-resistors is proposed. It consists of two operational-transconductance amplifiers (OTA) in series (a preamplifier and a variable-gain amplifier). To make it insensitive to the gate leakage current of the OTA input transistor, the feedback pseudo-resistor of the conventional ECG amplifier is moved to input branch between the OP amp summing node and the DC reference voltage. Also, an OTA circuit with a Gm boosting block without reducing the output resistance (Ro) is proposed to maximize the OTA DC gain. The measurements shows the frequency bandwidth from 7 Hz to 480 Hz, the midband gain programmable from 48.7 dB to 59.5 dB, the total harmonic distortion (THD) less than 1.21% with a full voltage swing, and the power consumption of 233 nW in a 0.13 ${\mu}m$ CMOS process at the supply voltage of 0.7 V.

Monolithic SiGe HBT Feedforward Variable Gain Amplifiers for 5 GHz Applications

  • Kim, Chang-Woo
    • ETRI Journal
    • /
    • v.28 no.3
    • /
    • pp.386-388
    • /
    • 2006
  • Monolithic SiGe heterojunction bipolar transistor (HBT) variable gain amplifiers (VGAs) with a feedforward configuration have been newly developed for 5 GHz applications. Two types of the feedforward VGAs have been made: one using a coupled-emitter resistor and the other using an HBT-based current source. At 5.2 GHz, both of the VGAs achieve a dynamic gain-control range of 23 dB with a control-voltage range from 0.4 to 2.6 V. The gain-tuning sensitivity is 90 mV/dB. At $V_{CTRL}$= 2.4 V, the 1 dB compression output power, $P_{1-dB}$, and dc bias current are 0 dBm and 59 mA in a VGA with an emitter resistor and -1.8 dBm and 71mA in a VGA with a constant current source, respectively.

  • PDF