• Title/Summary/Keyword: Vapor-liquid-solid mechanism

Search Result 31, Processing Time 0.031 seconds

Growth and Characterization of P-type Doping for InAs Nanowires during Vapor-liquid-solid and Vapor-solid Growth Mechanism by MOCVD

  • Hwang, Jeongwoo;Kim, Myung Sang;Lee, Sang Jun;Shin, Jae Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.328.2-328.2
    • /
    • 2014
  • Semiconductor nanowires (NWs) have attracted research interests due to the distinct physical properties that can lead to variousoptical and electrical applications. In this paper, we have grown InAs NWs viagold (Au)-assisted vapor-liquid-solid (VLS) and catalyst-free vapor-solid (VS) mechanisms and investigated on the p-type doping profile of the NWs. Metal-organic chemical vapor deposition (MOCVD) is used for the growth of the NWs. Trimethylindium (TMIn) and arsine (AsH3) were used for the precursor and diethyl zinc (DEZn) was used for the p-type doping source of the NWs. The effectiveness of p-type doping was confirmed by electrical measurement, showing an increase of the electron density with the DEZn flow. The structural properties of the InAs NWs were examined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In addition, we characterize atomic distribution of InAs NWs using energy-dispersive X-ray spectroscopy (EDX) analysis.

  • PDF

Morphology Control of Single Crystalline Rutile TiO2 Nanowires

  • Park, Yi-Seul;Lee, Jin-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3571-3574
    • /
    • 2011
  • Nano-scaled metal oxides have been attractive materials for sensors, photocatalysis, and dye-sensitization for solar cells. We report the controlled synthesis and characterization of single crystalline $TiO_2$ nanowires via a catalyst-assisted vapor-liquid-solid (VLS) and vapor-solid (VS) growth mechanism during TiO powder evaporation. Scanning electron microscope (SEM) and transmission electron microscope (TEM) studies show that as grown $TiO_2$ materials are one-dimensional (1D) nano-structures with a single crystalline rutile phase. Also, energy-dispersive X-ray (EDX) spectroscopy indicates the presence of both Ti and O with a Ti/O atomic ratio of 1 to 2. Various morphologies of single crystalline $TiO_2$ nano-structures are realized by controlling the growth temperature and flow rate of carrier gas. Large amount of reactant evaporated at high temperature and high flow rate is crucial to the morphology change of $TiO_2$ nanowire.

Disengagement of a Pendant Liquid Drop from a Vibrating Ceiling (진동하는 고체면에 매달린 액적의 분리 현상)

  • 김호영;강승민;강병하
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.4
    • /
    • pp.295-303
    • /
    • 2001
  • Condensation of vapor on solid inherently accompanies generation of liquid drops on the solid surface. However, these drops prevent the solid surface from directly contacting the saturated vapor, thus causing thermal resistance. This work investigates a novel mechanism for enhancing the condensation process, in which the condensed drops are rapidly removed from a solid surface by imposing vibration on them. In the experiments, a water drop pendant from a solid surface is vibrated at a fixed frequency while increasing the vibration amplitude. Upon repeating the experiments using various frequencies, it is revealed that there exist resonant frequencies at which the minimum vibration amplitudes inducing a fall-off of the pendant drops are remarkably less than those at neighboring frequencies. These frequencies are supposed to correspond to the resonant frequencies for different modes of drop shape oscillations. They are compared with the resonant frequencies predicted by relatively simple analyses, and the factors causing discrepancy between then are discussed.

  • PDF

Synthesis of Au Nanowires Using S-L-S Mechanism (S-L-S 성장기구를 이용한 양질의 골드 나노선 합성)

  • No, Im-Jun;Kim, Sung-Hyun;Shin, Paik-Kyun;Cho, Jin-Woo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.11
    • /
    • pp.922-925
    • /
    • 2012
  • Single crystalline Au nanowires were successfully synthesized in a tube-type furnace. The Au nanowires were grown by vapor phase synthesis technique using solid-liquid-solid (SLS) mechanism on substrates of corning glass and Si wafer. Prior to Au nanowire synthesis, Au thin film served as both catalyst and source for Au nanowire was prepared by sputtering process. Average length of the grown Au nanowires was approximately 1 ${\mu}m$ on both the corning glass and Si wafer substrates, while the diameter and the density of which were dependent on the thickness of the Au thin film. To induce a super-saturated states for the Au particle catalyst and Au molecules during the Au nanowire synthesis, thickness of the Au catalyst thin film was fixed to 10 nm or 20 nm. Additionally, synthesis of the Au nanowires was carried out without introducing carrier gas in the tube furnace, and synthesis temperature was varied to investigate the temperature effect on the resulting Au nanowire characteristics.

Synthesis of Single-Crystalline InSb Nanowires Using CVD Method and Study of Growth Mechanism in Open and Close System (CVD 방법을 이용한 단결정 InSb 나노와이어의 성장과 Open/Close 시스템에서의 반응 메커니즘 연구)

  • Kang, Eun Ji;Park, Yi-Seul;Lee, Jin Seok
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.6
    • /
    • pp.306-312
    • /
    • 2013
  • Single-crystalline InSb nanowire was synthesized on $SiO_2$ wafer via vapor-liquid-solid (VLS) mechanism using chemical vapor deposition method. According to the source container system (open or close) which contain InSb powder and $SiO_2$ wafer, the single-crystalline InSb nanowires have different growth mechanisms. Structural characterization of the InSb nanowires was examined by scanning electron microscope (SEM). Composition of the nanowires was investigated using x-ray diffraction (XRD) and energy dispersive x-ray spectroscopy (EDS). This study demonstrates that length and diameter of the InSb nanowires are long and thick using open-boat system by VLS and additional vapor-solid (VS) mechanisms, because open-boat system can carry a large amount of vapor-phase InSb precursor than close-boat system.

Growth of SiC nanowires by SLS growth mechanism (SLS 성장방법에 의한 SiC 나노와이어의 성장)

  • 노대호;김재수;변동진;진정근;김나리;양재웅
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.116-116
    • /
    • 2003
  • Most of all nano-structures, SiC had a high electrical conductivity and mechanical strengths ay high temperatures. So It was considered a useful materials for nanosized device materials and added materials for strength hardening. Much methods were developed for SiC nanowire and nanorods like CVD, carbothermal reduction, Laser ablation and CNT-confined reduction. These methods used the VLS (Vapor-Liquid-Solid) growth mechanism. In these experiments, SiC nanowire was grown by SLS (Sold-Liquid-Solid) growth mechanism used Graphite substrate, And we characterized its microstructure to compare with VLS growth mechanism.

  • PDF

Direct synthesis mechanism of amorphous $SiO_x$ nanowires from Ni/Si substrate (Ni/Si 기판을 사용하여 성장시킨 비결정질 $SiO_x$ 나노 와이어의 성장 메커니즘)

  • Song, W.Y.;Shin, T.I.;Lee, H.J.;Kim, H.;Kim, S.W.;Yoon, D.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.6
    • /
    • pp.256-259
    • /
    • 2006
  • The amorphous $SiO_x$ nanowires were synthesized by the vapor phase epitaxy (VPE) method. $SiO_x$ nanowires were formed on silicon wafer of temperatures ranged from $800{\sim}1100^{\circ}C$ and nickel thin film was used as a catalyst for the growth of nanowires. A vapor-liquid-solid (VLS) mechanism is responsible for the catalyst-assisted amorphous $SiO_x$ nanowires synthesis in this experiment. The SEM images showed cotton-like nanostructure of free standing $SiO_x$ nanowires with the length of more than about $10{\mu}m$. The $SiO_x$ nanowires were confirmed amorphous structure by TEM analysis and EDX spectrum reveals that the nanowires consist of Si and O.

Synthesis of Silicon Carbide Whiskers (I) : Reaction Mechanism and Rate-Controlling Reaction (탄화규소 휘스커의 합성(I) : 반응기구의 율속반응)

  • 최헌진;이준근
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.12
    • /
    • pp.1329-1336
    • /
    • 1998
  • A twt -step carbothermal reduction scheme has been employed for the synthesis of SiC whiskers in an Ar or a H2 atmosphere via vapor-solid two-stage and vapor-liquid-solid growth mechanism respectively. It has been shown that the whisker growth proceed through the following reaction mechanism in an Ar at-mosphere : SiO2(S)+C(s)-SiO(v)+CO(v) SiO(v)3CO(v)=SiC(s)whisker+2CO2(v) 2C(s)+2CO2(v)=4CO(v) the third reaction appears to be the rate-controlling reaction since the overall reaction rates are dominated by the carbon which is participated in this reaction. The whisker growth proceeded through the following reaction mechaism in a H2 atmosphere : SiO2(s)+C(s)=SiO(v)+CO(v) 2C(s)+4H2(v)=2CH4(v) SiO(v)+2CH4(v)=SiC(s)whisker+CO(v)+4H2(v) The first reaction appears to be the rate-controlling reaction since the overall reaction rates are enhanced byincreasing the SiO vapor generation rate.

  • PDF

Characteristics of Friction and Wear of Metals Under Vapor Phase Lubrication (Vapor Phase Lubrication을 통한 금속의 마찰 및 마멸 특성)

  • 김대은;양지철;성인하
    • Tribology and Lubricants
    • /
    • v.18 no.2
    • /
    • pp.109-116
    • /
    • 2002
  • phase lubrication can be used as an alterative lubrication method to overcome the demerits of liquid and solid lubrications. In this work, the tribological characteristics of metals are investigated under vapor phase lubrication. It was found that the friction coefficient and wear volume can be controlled efficiently by the amount of vapor phase lubricant delivered to the sliding interface. The friction coefficient could be reduced to about 0.1 under vapor lubrication. Also, depending on the amount of vapor lubrication delivered to the system, the width of the wear track could be varied between 50 to 250 Um. It is shown that vapor phase lubrication mechanism is very effective to control the friction and wear phenomena without the use of excessive oil.