Browse > Article
http://dx.doi.org/10.5757/JKVS.2013.22.6.306

Synthesis of Single-Crystalline InSb Nanowires Using CVD Method and Study of Growth Mechanism in Open and Close System  

Kang, Eun Ji (Department of Chemistry, Sookmyung Women's University)
Park, Yi-Seul (Department of Chemistry, Sookmyung Women's University)
Lee, Jin Seok (Department of Chemistry, Sookmyung Women's University)
Publication Information
Journal of the Korean Vacuum Society / v.22, no.6, 2013 , pp. 306-312 More about this Journal
Abstract
Single-crystalline InSb nanowire was synthesized on $SiO_2$ wafer via vapor-liquid-solid (VLS) mechanism using chemical vapor deposition method. According to the source container system (open or close) which contain InSb powder and $SiO_2$ wafer, the single-crystalline InSb nanowires have different growth mechanisms. Structural characterization of the InSb nanowires was examined by scanning electron microscope (SEM). Composition of the nanowires was investigated using x-ray diffraction (XRD) and energy dispersive x-ray spectroscopy (EDS). This study demonstrates that length and diameter of the InSb nanowires are long and thick using open-boat system by VLS and additional vapor-solid (VS) mechanisms, because open-boat system can carry a large amount of vapor-phase InSb precursor than close-boat system.
Keywords
Nanowire; InSb; Chemical Vapor Deposition method; Vapor-Liquid-Solid growth; Vapor-Solid growth;
Citations & Related Records
연도 인용수 순위
  • Reference
1 O. Madelung, Data in Science and Technology-Semiconductors Group IV Elements and III-V Compounds, (Springer, Berlin, 1991), p. 141.
2 I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).   DOI   ScienceOn
3 T. Ashley, A. B. Dean, C. T. Elliott, G. J. Pryce, A. D. Johnson, and H. Willis, Appl. Phys. Lett. 66, 481 (1995).   DOI   ScienceOn
4 F. W. Wise, Acc. Chem. Res. 33, 773 (2000).   DOI   ScienceOn
5 J. Heremans, J. Phys. D: Appl. Phys. 26, 1149 (1993).   DOI   ScienceOn
6 Y. X. Zhang and F. O. Williamson, Appl. Opt. 21, 2036 (1982).   DOI
7 S. Yamaguchi, T. Matsumoto, J. Yamazaki, and N. Kaiwa, A. Yamamoto, Appl. Phys. Lett. 87, 201902 (2005).   DOI   ScienceOn
8 J. H. Seol, A. L. Moore, S. K. Saha, F. Zhou, L. Shi, Q. Ye, R. H. Scheffler, N. Mingo, and T. Yamada, J. Appl. Phys. 101, 023706 (2007).   DOI   ScienceOn
9 Y. Li, F. Qian, J. Xiang, and C. M. Lieber, Mater. Today 9, 18 (2006).
10 F. Qian, S. Gradecak, Y. Li, C. Y. Wen, and C. M. Lieber, Nano Lett. 5, 2287 (2005).   DOI   ScienceOn
11 F. Qian, Y. Li, S. Gradecak, H. G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, Nat. Mater. 7, 701 (2008).   DOI   ScienceOn
12 F. Qian, Y. Li, S. Gradecak, D. Wang, C. J. Barrelet, and C. M. Lieber, Nano Lett. 4, 1975 (2004).   DOI   ScienceOn
13 R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964).   DOI
14 R. S. Wagner and W. R. Ellis, Trans. Met. Soc. AIME. 233, 1053 (1965).
15 M. Reich, S. Utsunomiya, S. E. Kesler, L. Wang, R. C. Ewing, and U. Becker, Geology 34, 1033 (2006).   DOI   ScienceOn