• Title/Summary/Keyword: Vapor synthesis

Search Result 392, Processing Time 0.027 seconds

Synthesis and characterization of $SnO_2$ nanowires on Si substrates in a thermal chemical vapor deposition process (열화학기상증착법을 이용한 Si 기판 위의 $SnO_2$ 나노와이어 제작 및 물성평가)

  • Lee, Deuk-Hee;Park, Hyun-Kyu;Lee, Sam-Dong;Jeong, Soon-Wook;Kim, Sang-Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.3
    • /
    • pp.91-94
    • /
    • 2007
  • Single-crystalline $SnO_2$ nanowires were successfully grown on Si(001) substrates via vapor-liquid-solid mechanism in a thermal chemical vapor deposition. Large quantity of $SnO_2$ nanowires were synthesized at temperature ranges of $950{\sim}1000^{\circ}C$ in Ar atmosphere. It was found that the grown $SnO_2$ nanowires are of a tetragonal rutile structure and single crystalline by diffraction and transmission electron microscopy measurements. Broad emission located at about 600 m from the grown nanowires was clearly observed in room temperature photoluminescence measurements, indicating that the emission band originated from defect level transition into $SnO_2$ nanowires.

Synthesis of Three-Dimensional Graphene Using Porous Nickel Nanostructure (다공성 니켈 나노 구조체를 이용한 3차원 그래핀의 합성)

  • Song, Wooseok;Myung, Sung;Lee, Sun Sook;Lim, Jongsun;An, Ki-Seok
    • Composites Research
    • /
    • v.29 no.4
    • /
    • pp.151-155
    • /
    • 2016
  • Graphene has been a valuable candidate for use as electrodes for supercapacitors. In order to improve the surface area of graphene, three-dimensional graphene was synthesized on porous Ni nanostructure using thermal chemical vapor deposition and microwave plasma chemical vapor deposition. The structural and chemical characterization of synthesized graphene was performed by scanning electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. It was confirmed that three-dimensional and high-crystalline multilayer graphene onto various substrates was synthesized successfully.

Vapor Permeation Characteristics of TiO2 Composite Membranes Prepared on Porous Stainless Steel Support by Sol-Gel Method

  • Lee, Yoon-Gyu;Lee, Dong-Wook;Kim, Sang-Kyoon;Sea, Bong-Kuk;Youn, Min-Young;Lee, Kwan-Young;Lee, Kew-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.5
    • /
    • pp.687-693
    • /
    • 2004
  • Composite membranes with a titania layer were prepared by soaking-rolling method with the titania sol of nanoparticles formed in the sol-gel process and investigated regarding the vapor permeation of various organic mixtures. The support modification was conducted by pressing $SiO_2$ xerogel of 500 nm in particle size under 10 MPa on the surface of a porous stainless steel (SUS) substrate and designed the multi-layered structure by coating the intermediate layer of ${\gamma}-Al_2O_3$. Microstructure of titania membrane was affected by heat-treatment and synthesis conditions of precursor sol, and titania formed at calcination temperature of 300$^{\circ}C$ with sol of [$H^+$]/[TIP]=0.3 possessed surface area of 210 $m^2$/g, average pore size of 1.25 nm. The titania composite membrane showed high $H_2/N_2$ selectivity and water/ethanol selectivity as 25-30 and 50-100, respectively. As a result of vapor permeation for water-alcohol and alcohol-alcohol mixture, titania composite membrane showed water-permselective and molecular-sieve permeation behavior. However, water/methanol selectivity of the membrane was very low because of chemical affinity of permeants for the membrane by similar physicochemical properties of water and methanol.

Low-temperture Synthesis of CdTe/Te Core-shell Hetero-nanostructures by Vapor-solid Process

  • Song, Gwan-U;Kim, Tae-Hun;Bae, Ji-Hwan;Lee, Jae-Uk;Park, Min-Ho;Yang, Cheol-Ung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.580-580
    • /
    • 2012
  • Heterostructures has unique and important properties, which may be helpful for finding many potential applications in the field of electronic, thermoelectric, and optoelectronic devices. We synthesized CdTe/Te core-shell heterostructures by vapor-solid process at low temperatures using a quartz tube furnace. Two step vapor-solid processes were employed. First, various tellurium structures such as nanowires, nanorods, nanoneedles, microtubes and microrods were synthesized under various deposition conditions. These tellurium nanostructures were then used as substrates in the second step to synthesize the CdTe/Te core-shell heterostructures. Using this method, various sizes, shapes and types of CdTe/Te core-shell structures were fabricated under a range of conditions. These structures were analysed by scanning electron microscopy, high resolution transmission electron microscopy, and energy dispersive x-ray spectroscopy. The vapor phase process at low temperatures appears to be an efficient method for producing a variety of Cd/Te hetero-nanostructures. In addition, the hetero-nanostructures can be tailored to the needs of specific applications by deliberately controlling the synthetic parameters.

  • PDF

p-type CuI Thin-Film Transistors through Chemical Vapor Deposition Process (Chemical Vapor Deposition 공정으로 제작한 CuI p-type 박막 트랜지스터)

  • Seungmin Lee;Seong Cheol Jang;Ji-Min Park;Soon-Gil Yoon;Hyun-Suk Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.11
    • /
    • pp.491-496
    • /
    • 2023
  • As the demand for p-type semiconductors increases, much effort is being put into developing new p-type materials. This demand has led to the development of novel new p-type semiconductors that go beyond existing p-type semiconductors. Copper iodide (CuI) has recently received much attention due to its wide band gap, excellent optical and electrical properties, and low temperature synthesis. However, there are limits to its use as a semiconductor material for thin film transistor devices due to the uncontrolled generation of copper vacancies and excessive hole doping. In this work, p-type CuI semiconductors were fabricated using the chemical vapor deposition (CVD) process for thin-film transistor (TFT) applications. The vacuum process has advantages over conventional solution processes, including conformal coating, large area uniformity, easy thickness control and so on. CuI thin films were fabricated at various deposition temperatures from 150 to 250 ℃ The surface roughness root mean square (RMS) value, which is related to carrier transport, decreases with increasing deposition temperature. Hall effect measurements showed that all fabricated CuI films had p-type behavior and that the Hall mobility decreased with increasing deposition temperature. The CuI TFTs showed no clear on/off because of the high concentration of carriers. By adopting a Zn capping layer, carrier concentrations decreased, leading to clear on and off behavior. Finally, stability tests of the PBS and NBS showed a threshold voltage shift within ±1 V.

Synthesis of Hexagonal Boron Nitride along a domain of Cu foil

  • Park, Jong-Hyun;Moon, Youngwoong;Park, Sijin;Kim, Hyojin;Hwang, Chanyong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.344.2-344.2
    • /
    • 2016
  • Fully and partially grown hexagonal boron nitride (h-BN) on Cu foil, synthesized by chemical vapor deposition method, was studied using Raman and SEM measurements. Fully and partially grown samples were successfully made from borane-ammonia complex to controlling pressure and growth time. The fully grown h-BN and partially grown h-BN exhibits a ~ 1370 cm-1 B-N vibrational mode (E2g). Especially, well-aligned triangular h-BN monolayer was observed on some domain of Cu foil using SEM measurements.

  • PDF

Synthesis and Properties of Two Dimensional Doped Transition Metal Dichalcogenides

  • Yoon, Aram;Lee, Zonghoon
    • Applied Microscopy
    • /
    • v.47 no.1
    • /
    • pp.19-28
    • /
    • 2017
  • Since graphene was discovered in 2004, two-dimensional (2D) materials have been actively studied. Especially, 2D transition metal dichalcogenides (TMDs), such as $MoS_2$ and $WS_2$, have been the subject of significant research because of their exceptional optical, electrical, magnetic, catalytic, and morphological properties. Therefore, these materials are expected to be used in a variety of applications. Furthermore, tuning the properties of TMDs is essential to improve their performance and expand their applications. This review classifies the various doping methods of 2D TMDs, and it summarizes how the dopants interact with the materials and how the performance of the materials improves depending on the synthesis methods and the species of the dopants.

Graphene Synthesis by Low Temperature Chemical Vapor Deposition and Rapid Thermal Anneal (저온 화학기상증착법 및 급속가열 공정을 이용한 그래핀의 합성)

  • Lim, Sung-Kyu;Mun, Jeong-Hun;Lee, Hi-Deok;Yoo, Jung-Ho;Yang, Jun-Mo;Wang, Jin-Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.12
    • /
    • pp.1095-1099
    • /
    • 2009
  • As a substitute material for silicon, we synthesized few layer graphene (FLG) by CVD process with a 300-nm-thick nickel film deposited on the silicon substrate and found out the lowest temperature for graphene synthesis. Raman spectroscopy study showed that the D peak (wave length : ${\sim}1,350\;cm^{-1}$) of graphene was minimized and then the 2D one (wave length : ${sim}2,700\;cm^{-1}$) appeared when rapid thermal anneal is carried out with the $C_2H_2$ treated nickel film. This study demonstrates that a high quality FLG formed at a low temperature of $400^{\circ}C$ is applicable as CMOS devices and transparent electrode materials.

Effect of the Process Parameters on the Fe Nano Powder Formation in the Plasma Arc Discharge Process (플라즈마 아크 방전법에서 Fe 나노 분말 형성에 미치는 공정변수의 영향)

  • 이길근;김성규
    • Journal of Powder Materials
    • /
    • v.10 no.1
    • /
    • pp.51-56
    • /
    • 2003
  • To investigate the effect of the parameters of the plasma arc discharge process on the particle formation and particle characteristics of the iron nano powder, the chamber pressure, input current and the hydrogen volume fraction in the powder synthesis atmosphere were changed. The particle size and phase structure of the synthesized iron powder were studied using the FE-SEM, FE-TEM and XRD. The synthesized iron powder particle had a core-shell structure composed of the crystalline $\alpha$-Fe in the core and the crystalline $Fe_3O_4$ in the shell. The powder generation rate and particle size mainly depended on the hydrogen volume fraction in the powder synthesis atmosphere. The particle size increased simultaneously with increasing the hydrogen volume fraction from 10% to 50%, and it ranged from about 45nm to 130 nm.

Synthesis and Characteristics of W-l5wt%Cu Nanocomposite Powder by Oxide Reduction (산화물환원에 의한 W-15wt%Cu 나노복합분말의 합성과 특성)

  • 윤의식
    • Journal of Powder Materials
    • /
    • v.4 no.4
    • /
    • pp.304-309
    • /
    • 1997
  • The synthesis of W-l5wt%Cu nanocomposite powder by hydrogen reduction of ball milled W-Cu oxide mixture was investigated in terms of powder characteristics such as particle size, mixing homogeneity and micropore structure. It is found that the micropores in the ball milled oxide (2-50 nm in size) act as an effective removal path of water vapor, followed by the formation of dry atmosphere at reaction zone. Such thermodynamic condition enhances the nucleation of W phase but suppresses the growth process, being in favor of the formation of W nanoparticles (about 21 nm in size). In addition, the superior mixing homogeneity of starting oxide mixture turned out to Play a significant role for forming extraordinary chemical homogeneity of W-l5wt%Cu nanocomposite powder.

  • PDF