Browse > Article
http://dx.doi.org/10.9729/AM.2017.47.1.19

Synthesis and Properties of Two Dimensional Doped Transition Metal Dichalcogenides  

Yoon, Aram (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST))
Lee, Zonghoon (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST))
Publication Information
Applied Microscopy / v.47, no.1, 2017 , pp. 19-28 More about this Journal
Abstract
Since graphene was discovered in 2004, two-dimensional (2D) materials have been actively studied. Especially, 2D transition metal dichalcogenides (TMDs), such as $MoS_2$ and $WS_2$, have been the subject of significant research because of their exceptional optical, electrical, magnetic, catalytic, and morphological properties. Therefore, these materials are expected to be used in a variety of applications. Furthermore, tuning the properties of TMDs is essential to improve their performance and expand their applications. This review classifies the various doping methods of 2D TMDs, and it summarizes how the dopants interact with the materials and how the performance of the materials improves depending on the synthesis methods and the species of the dopants.
Keywords
Two-dimensional materials; Transition metal dichalcogenides; Doping; Chemical vapor transport; Chemical doping;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Al-Dulaimi N, Lewis D J, Zhong X L, Malik M A, and O'Brien P (2016) Chemical vapour deposition of rhenium disulfide and rhenium-doped molybdenum disulfide thin films using single-source precursors. J. Mater. Chem. C 4, 2312-2318.   DOI
2 Ataca C, Sahin H, and Ciraci S (2012) Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. J. Phys. Chem. C 116, 8983-8999.   DOI
3 Binnewies M, Glaum R, Schmidt M, and Schmidt P (2013) Chemical vapor transport reactions-a historical review. ZAAC 639, 219-229.
4 Deng J, Li H, Xiao J, Tu Y, Deng D, Yang H, Tian H, Li J, Ren P, and Bao X (2015) Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ. Sci. 8, 1594-1601.   DOI
5 Gao J, Kim Y D, Liang L, Idrobo J C, Chow P, Tan J, Li B, Li L, Sumpter B G, and Lu T M (2016) Transition-metal substitution doping in synthetic atomically thin semiconductors. Adv. Mater. 28, 9735-9743.   DOI
6 Hayashi Y (2016) Pot economy and one-pot synthesis. Chem. Sci. 7, 866-880.   DOI
7 Hwang N M (2016). Non-Classical Crystallization of Thin Films and Nanostructures in CVD and PVD Processes (Vol. 60) (Springer, Seoul).
8 Lewis D J, Tedstone A A, Zhong X L, Lewis E A, Rooney A, Savjani N, Brent J R, Haigh S J, Burke M G, and Muryn C A (2015) Thin films of molybdenum disulfide doped with chromium by aerosol-assisted chemical vapor deposition (AACVD). Chem. Mater. 27, 1367-1374.   DOI
9 Zhang K, Feng S, Wang J, Azcatl A, Lu N, Addou R, Wang N, Zhou C, Lerach J, and Bojan V (2015) Manganese doping of monolayer MoS2: the substrate is critical. Nano Lett. 15, 6586-6591.   DOI
10 Lin Y C, Dumcenco D O, Komsa H P, Niimi Y, Krasheninnikov A V, Huang Y S, and Suenaga K (2014) Properties of individual dopant atoms in single-layer MoS2: atomic structure, migration, and enhanced reactivity. Adv. Mater. 26, 2857-2861.   DOI
11 Mak K F, He K, Lee C, Lee G H, Hone J, Heinz T F, and Shan J (2013) Tightly bound trions in monolayer MoS2. Nat. Mater. 12, 207-211.   DOI
12 Mouri S, Miyauchi Y, and Matsuda K (2013) Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 13, 5944-5948.   DOI
13 Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, and Firsov A A (2004) Electric field effect in atomically thin carbon films. Science 306, 666-669.   DOI
14 Park J H and Sudarshan T S (2001) Chemical Vapor Deposition (Vol. 2) (ASM International, Illinois).
15 Qin S, Lei W, Liu D, and Chen Y (2014) In-situ and tunable nitrogendoping of MoS2 nanosheets. Sci. Rep. 4, 7582.
16 Sim D M, Kim M, Yim S, Choi M J, Choi J, Yoo S, and Jung Y S (2015) Controlled doping of vacancy-containing few-layer MoS2 via highly stable thiol-based molecular chemisorption. ACS Nano 9, 12115-12123.   DOI
17 Suh J, Park T E, Lin D Y, Fu D, Park J, Jung H J, Chen Y, Ko C, Jang C, and Sun Y (2014) Doping against the native propensity of MoS2: degenerate hole doping by cation substitution. Nano Lett. 14, 6976-6982.   DOI
18 Tedstone A A, Lewis D J, Hao R, Mao S M, Bellon P, Averback R S, Warrens C P, West K R, Howard P, and Gaemers S (2015) Mechanical properties of molybdenum disulfide and the effect of doping: an in situ TEM study. ACS Appl. Mater. Interfaces 7, 20829-20834.   DOI
19 Wang H, Yuan H, Hong S S, Li Y, and Cui Y (2015) Physical and chemical tuning of two-dimensional transition metal dichalcogenides. Chem. Soc. Rev. 44, 2664-2680.   DOI
20 Tedstone A A, Lewis D J, and O'Brien P (2016) Synthesis, properties, and applications of transition metal-doped layered transition metal dichalcogenides. Chem. Mater. 28, 1965-1974.   DOI
21 Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, and Strano M S (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699-712.   DOI
22 Yang L, Majumdar K, Liu H, Du Y, Wu H, Hatzistergos M, Hung P, Tieckelmann R, Tsai W, and Hobbs C (2014) Chloride molecular doping technique on 2D materials: WS2 and MoS2. Nano Lett. 14, 6275-6280.   DOI
23 Yu J, Lee C H, Bouilly D, Han M, Kim P, Steigerwald M L, Roy X, and Nuckolls C (2016) Patterning superatom dopants on transition metal dichalcogenides. Nano Lett. 16, 3385-3389.   DOI