Browse > Article
http://dx.doi.org/10.7234/composres.2016.29.4.151

Synthesis of Three-Dimensional Graphene Using Porous Nickel Nanostructure  

Song, Wooseok (Thin Film Materials Research Center, Korea Research Institute of Chemical Technology)
Myung, Sung (Thin Film Materials Research Center, Korea Research Institute of Chemical Technology)
Lee, Sun Sook (Thin Film Materials Research Center, Korea Research Institute of Chemical Technology)
Lim, Jongsun (Thin Film Materials Research Center, Korea Research Institute of Chemical Technology)
An, Ki-Seok (Thin Film Materials Research Center, Korea Research Institute of Chemical Technology)
Publication Information
Composites Research / v.29, no.4, 2016 , pp. 151-155 More about this Journal
Abstract
Graphene has been a valuable candidate for use as electrodes for supercapacitors. In order to improve the surface area of graphene, three-dimensional graphene was synthesized on porous Ni nanostructure using thermal chemical vapor deposition and microwave plasma chemical vapor deposition. The structural and chemical characterization of synthesized graphene was performed by scanning electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. It was confirmed that three-dimensional and high-crystalline multilayer graphene onto various substrates was synthesized successfully.
Keywords
Graphene; Three-dimensional structure; Thermal chemical vapor deposition; Microwave plasma chemical vapor deposition;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A., "Electric Field Effect in Atomically Thin Carbon Films," Science, Vol. 306, 2004, pp. 666-669.   DOI
2 Novoselov, K.S., Jiang, Z., Zhang, Y., Morozov, S.V., Stormer, H.L., Zeitler, U., Maan, J.C., Boebinger, G.S., Kim, P., and Geim, A.K., "Room-Temperature Quantum Hall Effect in Graphene," Science, Vol. 315, 2007, pp. 1379.   DOI
3 Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M.R., and Geim, A.K., "Fine Structure Constant Defines Visual Transparency of Graphene," Science, Vol. 320, 2008, pp. 1308.   DOI
4 Li, X., Wang, X., Zhang, L., Lee, S., and Dai, H., "Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors," Science, Vol. 319, 2008, pp. 1229-1232.   DOI
5 Jiao, L., Wang, X., Diankov, G., Wang, H., and Dai, H., "Facile Synthesis of High-quality Graphene Nanoribbons," Nat. Nanotechnol., Vol. 5, 2010, pp. 321-325.   DOI
6 Song, W., Kim, S.Y., Kim, Y., Kim, S.H., Lee, S.I., Song, I., Jeon, C., and Park, C.-Y., "Site-Specific Growth of Width-Tailored Graphene Nanoribbons on Insulating Substrates," J. Phys. Chem. C, Vol. 116, 2012, pp. 20023-20029.   DOI
7 Kim, K.W., Song, W., Jung, M.W., Kang, M.-A., Kwon, S.Y., Myung, S., Lim, J., Lee, S.S., and An, K.-S., "Au Doping Effect on Chemically-Exfoliated Graphene and Graphene Grown via Chemical Vapor Deposition," Carbon, Vol. 82, 2015, pp. 96-102.   DOI
8 Kim, S.H., Song, W., Jung, M.W., Kang, M.-A., Kim, K., Chang, S.-J., Lee, S.S., Lim, J., Hwang, J., Myung, S., and An, K.-S., "Carbon Nanotube and Graphene Hybrid Thin Film for Transparent Electrodes and Field Effect Transistors," Adv. Mater., Vol. 26, 2014, pp. 4247-4252.   DOI
9 Song, W., Kim, Y., Kim, S.H., Kim, S.Y., Cha, M.-J., Song, I., Jung, D.S., Jeon, C., Lim, T., Lee, S., Ju, S., Choi, W.C., Jung, M.W., An, K.-S., and Park, C.-Y., "Homogeneous and Stable ptype Doping of Graphene by MeV Electron Beam-Stimulated Hybridization with ZnO Thin Films," Appl. Phys. Lett., Vol. 102, 2013, pp. 053103.   DOI
10 Yan, Z., Ma, L., Zhu, Y., Lahiri, I., Hahm, M.G., Liu, Z., Yang, S., Xiang, C., Lu, W., Peng, Z., Sun, Z., Kittrell, C., Lou, J., Choi, W., Ajayan, P.M., and Tour, J.M., "Three-Dimensional Metal- Graphene-Nanotube Multifunctional Hybrid Materials", ACS Nano, Vol. 7, 2013, pp. 58-64.   DOI
11 Chen, J., Sheng, K., Luo, P., Li, C., and Shi, G., "Graphene Hydrogels Deposited in Nickel Foams for High-Rate Electrochemical Capacitors", Adv. Mater., Vol. 24, 2012, pp. 4569-4573.   DOI
12 Li, X., Zhu, Y., Cai, W., Borysiak, M., Han, B., Chen, D., Piner, R.D., Colombo, L., and Ruoff, R.S., "Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes," Nano Lett., Vol. 9, 2009, pp. 4359-4363.   DOI
13 Chae, S.J., Gunes, F., Kim, K.K., Kim, E.S., Han, G.H., Kim, S.M., Shin, H.-J., Yoon, S.-M., Choi, J.-Y., Park, M.H., Yang, C.W., Pribat, D., and Lee, Y.E., "Synthesis of Large-Area Graphene Layers on Poly-Nickel Substrate by Chemical Vapor Deposition: Wrinkle Formation," Adv. Mater., Vol. 21, 2009, pp. 2328-2333.   DOI
14 Yu, Q., Lian, J., Siriponglert, S., Li, H., Chen, Y.P., and Pei, S.- S., "Graphene Segregated on Ni Surfaces and Transferred to Insulators", Appl. Phys. Lett., Vol. 93, 2008, pp. 113103.   DOI
15 Song, W., Jeon, C., Kim, S.Y., Kim, Y., Kim, S.H., Lee, S.-I, Jung, D.S., Jung, M.W., An, K.-S., and Park, C.-Y., "Two Selective Growth Modes for Graphene on a Cu Substrate Using Thermal Chemical Vapor Deposition", Carbon, Vol. 68, 2014, pp. 87-94.   DOI