• Title/Summary/Keyword: Vapor crystal growth

Search Result 326, Processing Time 0.024 seconds

The geometry change of carbon nanofilaments by SF6 incorporation in a thermal chemical vapor deposition system

  • Kim, Sung-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.3
    • /
    • pp.119-123
    • /
    • 2011
  • Carbon nanotilaments (CNFs) could be synthesized on nickel catalyst layer-deposited silicon oxide substrate using $C_2H_2$ and$H_2$ as source gases under thermal chemical vapor deposition system. By the incorporation of $SF_6$ as a cyclic modulation manner, the geometries of carbon coils-related materials, such as nano-sized coil and wave-like nano-sized coil could be observed on the substrate. The characteristics (formation density and morphology) of as-grown CNFs with or without $SF_6$ incorporation were investigated. Diameter size reduction for the individual CNFs-related shape and the enhancement of the formation density of CNFs-related material could be achieved by the incorporation of $SF_6$ as a cyclic modulation manner. The cause for these results was discussed in association with the slightly increased etching ability by $SF_6$ addition and the sulfur role in SF 6 for the geometry change.

Effects of thermal boundary conditions and microgravity environments on physical vapor transport of $Hg_2Cl_2-Xe$ system

  • Kim, Geug-Tae;Kwon, Moo-Hyun;Lee, Kyong-Hwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.4
    • /
    • pp.172-183
    • /
    • 2009
  • For the effects of the nonlinear temperature profiles and reduced-gravity conditions we conduct a two-dimensional numerical modeling and simulations on the physical vapor transport processes of $Hg_2Cl_2-Xe$ system in the horizontal orientation position. Our results reveal that: (1) A decrease in aspect ratio from 5 to 2 leads to an increasingly nonuniform interfacial distribution and enhances the growth rate by one-order magnitude for normal gravity and linear wall temperature conditions. (2) Increasing the molecular weight of component B, Xenon results in a reduction in the effect of solutal convection. (3) The effect of aspect ratio affects the interfacial growth rates significantly under normal gravity condition rather than under reduced gravitational environments. (4) The transition from the convection-dominated regime to the diffusion-dominated regime ranges arises near at 0.1g$_0$ for operation conditions under consideration in this study.

Effects of inert gas (Ne) on thermal convection of mercurous chloride system of $Hg_2Cl_2$ and Ne during physical vapor transport

  • Choi, Jeong-Gil;Lee, Kyong-Hwan;Kim, Geug-Tae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.6
    • /
    • pp.225-231
    • /
    • 2008
  • For an aspect ratio (transport length-to-width) of 5, Pr=1.13, Le=1.91, Pe=4.3, Cv=1.01, $P_B=20\;Torr$, the effects of addition of inert gas Ne on thermally buoyancy-driven convection ($Gr=2.44{\times}10^3$) are numerically investigated for further understanding and insight into essence of transport phenomena in two dimensional horizontal enclosures. For $10K{\leq}{\Delta}T{\leq}50\;K$, the crystal growth rate increases from 10 K up to 20 K, and then is slowly decreased until ${\Delat}T=50\;K$, which is likely to be due to the effects of thermo-physical properties stronger than the temperature gradient corresponding to driving force for thermal convection. The dimensional maximum velocity gratitude reflecting the intensity of thermal convection is directly and linearly proportional to the temperature difference between the source and crystal regions. The rate is first order-exponentially decreased for $2{\leq}Ar{\leq}5$. This is related to the finding that the effects of side walls tend to stabilize convection in the growth reactor. In addition, the rate is first order exponentially decayed for $10{\leq}P_B{\leq}200\;Torr$.

Metalorganic chemical vapor deposition of semiconducting ZnO thin films and nanostructures

  • Kim Sang-Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.1
    • /
    • pp.12-19
    • /
    • 2006
  • Metalorganic chemical vapor deposition (MOCYD) techniques have been applied to fabricate semiconducting ZnO thin films and nanostructures, which are promising for novel optoelectronic device applications using their unique multifunctional properties. The growth and characterization of ZnO thin films on Si and $SiO_2$ substrates by MOCYD as fundamental study to realize ZnO nanostructures was carried out. The precise control of initial nucleation processes was found to be a key issue for realizing high quality epitaxial layers on the substrates. In addition, fabrication and characterization of ZnO nanodots with low-dimensional characteristics have been investigated to establish nanostructure blocks for ZnO-based nanoscale device application. Systematic realization of self- and artificially-controlled ZnO nanodots on $SiO_2/Si$ substrates was proposed and successfully demonstrated utilizing MOCYD in addition with a focused ion beam technique.

Direct synthesis mechanism of amorphous $SiO_x$ nanowires from Ni/Si substrate (Ni/Si 기판을 사용하여 성장시킨 비결정질 $SiO_x$ 나노 와이어의 성장 메커니즘)

  • Song, W.Y.;Shin, T.I.;Lee, H.J.;Kim, H.;Kim, S.W.;Yoon, D.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.6
    • /
    • pp.256-259
    • /
    • 2006
  • The amorphous $SiO_x$ nanowires were synthesized by the vapor phase epitaxy (VPE) method. $SiO_x$ nanowires were formed on silicon wafer of temperatures ranged from $800{\sim}1100^{\circ}C$ and nickel thin film was used as a catalyst for the growth of nanowires. A vapor-liquid-solid (VLS) mechanism is responsible for the catalyst-assisted amorphous $SiO_x$ nanowires synthesis in this experiment. The SEM images showed cotton-like nanostructure of free standing $SiO_x$ nanowires with the length of more than about $10{\mu}m$. The $SiO_x$ nanowires were confirmed amorphous structure by TEM analysis and EDX spectrum reveals that the nanowires consist of Si and O.

Growth and Properties of GaN by Vapor Transport Epitaxy (Vapor Transport Epitaxy에 의한 GaN의 성장과 특성)

  • Lee, Jae-Bum;Kim, Seon-Tai
    • Korean Journal of Materials Research
    • /
    • v.16 no.8
    • /
    • pp.479-484
    • /
    • 2006
  • Highly c-axis oriented poly-crystalline GaN with a dimension of $1{\sim}3\;{\mu}m$ was deposited on $c-Al_2O_3$ substrate by vapor transport epitaxy (VTE) method at the temperature range of $900{\sim}1150^{\circ}C$. XRD intensities from (00'2) plane of grown GaNs were increased with reaction conditions which indicate the improvement of the crystal quality. In the PL spectra measured at 10 K, the spectrum composed with the neutral-donor bound exciton-related emission at 3.47 eV, crystal defect-related emission band at 3.42 eV and with its phonon replicas. The fact that intensity of $I_2$ were increased and FWHM were decreased with growth conditions means that the quality of GaN crystals were improved. With this simple VTE technology, we confirm that the GaNs were simply deposited on sapphire substrate and crystal quality related to optical properties of GaN grown by VTE were relatively good. PL emission without deep level emission in spite of polycrystalline structure can be applicable to the fabrication of large area and low cost optical devices using poly-GaN grown by VTE.

Investigation of thermodynamic analysis in GaN thick films gtowth (GaN 후막 증착의 열역학적 해석에 관한 연구)

  • Park, Beom Jin;Park, Jin Ho;Sin, Mu Hwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.3
    • /
    • pp.387-387
    • /
    • 1998
  • This paper reports on a thermodynamic analysis for the GaN thick film growth by vapor phaseepitaxy method. The thermodynamic calculation was performed using a chemical stoichiometric algorism. Thesimulation variables include the growth temperature in a range 400~1500 K, the gas ratios $(GaCl_3)/(GaCl_3+NH_3)$and $(N_2)/(GaCl_3+NH_3)$. The theoretical calculation predicts that the growth temperature of GaN be in thelower range of 450~750 K than the experimental results. The difference in the growth temperature betweenthe simulation and the experiments indicates that the vapor phase epitaxy of GaN is kinetically limited,presumably, due to the high activation energy of thin film growth.

Investigation of thermodynamic analysis in GaN thick films gtowth (GaN 후막 증착의 열역학적 해석에 관한 연구)

  • 박범진;박진호;신무환
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.3
    • /
    • pp.388-395
    • /
    • 1998
  • This paper reports on a thermodynamic analysis for the GaN thick film growth by vapor phase epitaxy method. The thermodynamic calculation was performed using a chemical stoichiometric algorism. The simulation variables include the growth temperature in a range 400~1500 K, the gas ratios $(GaCl_3)/(GaCl_3+NH_3)$ and $(N_2)/(GaCl_3+NH_3)$. The theoretical calculation predicts that the growth temperature of GaN be in the lower range of 450~750 K than the experimental results. The difference in the growth temperature between the simulation and the experiments indicates that the vapor phase epitaxy of GaN is kinetically limited, presumably, due to the high activation energy of thin film growth.

  • PDF

Effects of convection on physical vapor transport of Hg2Cl2 in the presence of Kr - Part I: under microgravity environments

  • Lee, Yong Keun;Kim, Geug-Tae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.1
    • /
    • pp.20-26
    • /
    • 2013
  • Special attention in the role of convection in vapor crystal growth has been paid since some single crystals under microgravity environments less than 1 $g_0$ exhibits a diffusive-convection mode and much uniformity in front of the crystal regions than a normal gravity acceleration of 1 $g_0$. The total molar fluxes show asymmetrical patterns in interfacial distribution, which indicates the occurrence of either one single or more than one convective cell. As the gravitational level decreases form 1 $g_0$ down to $1.0{\times}10^{-4}\;g_0$, the intensity of convection, indicative of the maximum molar fluxes, is reduced significantly for ${\Delta}T=30K$ and 90 K. The total molar fluxes decay first order exponentially with the partial pressure of component B, PB (Torr) for 20 Torr ${\leq}PB{\leq}$ 300 Torr, and two gravity accelerations of $g_y=1\;g_0$ and 0.1 $g_0$.

Dependence of defects on growth rate in (100) ZnSe cryseal ((100) ZnSe 결정에서 결함의 성장 속도에 대한 의존성)

  • 박성수;이성국;김준홍;한재용;이상학
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.2
    • /
    • pp.263-268
    • /
    • 1998
  • (100) ZnSe crystals with twin and grain free were grown by vapor transport method. The defect in (100) ZnSe crystals was investigated by FWHM of X-ray Rocking Curve. The growth rate and seed quality are the main parameters of the growth process to obtain the high quality ZnSe crystals. The geometric shape of the grown (100) ZnSe crystal is dependent on the shape of seed, isothermal line in furnace and the growth rate of each surface in crystal.

  • PDF