Browse > Article
http://dx.doi.org/10.3740/MRSK.2006.16.8.479

Growth and Properties of GaN by Vapor Transport Epitaxy  

Lee, Jae-Bum (Department of Materials Science and Engineering, Hanbat National University)
Kim, Seon-Tai (Department of Materials Science and Engineering, Hanbat National University)
Publication Information
Korean Journal of Materials Research / v.16, no.8, 2006 , pp. 479-484 More about this Journal
Abstract
Highly c-axis oriented poly-crystalline GaN with a dimension of $1{\sim}3\;{\mu}m$ was deposited on $c-Al_2O_3$ substrate by vapor transport epitaxy (VTE) method at the temperature range of $900{\sim}1150^{\circ}C$. XRD intensities from (00'2) plane of grown GaNs were increased with reaction conditions which indicate the improvement of the crystal quality. In the PL spectra measured at 10 K, the spectrum composed with the neutral-donor bound exciton-related emission at 3.47 eV, crystal defect-related emission band at 3.42 eV and with its phonon replicas. The fact that intensity of $I_2$ were increased and FWHM were decreased with growth conditions means that the quality of GaN crystals were improved. With this simple VTE technology, we confirm that the GaNs were simply deposited on sapphire substrate and crystal quality related to optical properties of GaN grown by VTE were relatively good. PL emission without deep level emission in spite of polycrystalline structure can be applicable to the fabrication of large area and low cost optical devices using poly-GaN grown by VTE.
Keywords
GaN; vapor transport epitaxy; VTE;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Dingle, D. D. Shell, S. E. Stokowski and M. Ilegems, Phys, Rev., 4, 1211 (1971)   DOI
2 Z. C. Feng, J. H. Chen, H. L. Tsai, J. R. Yang and A. G. Li, Photo. Mater., Devices and Applications, SPIE, 01-211 (2005)
3 P. Perlin, C. J. carllon, J. P. Itie and A. S. Migule, Phys. Rev. B, 45, 83-89 (1992)   DOI   ScienceOn
4 O. Lagerstedt and B. Monemar, Phys. Rev. B, 19, 3064-3070 (1979)   DOI
5 H. Xing, S. P. DenBaars and U. K. Mishara, J. Appl. Phys., 97, 113703 (2005)   DOI   ScienceOn
6 K. Balakrishnan, H. Okumura and S. Yoshida, Blue Laser and Light Emitting Diodes, Ohmsha, 634-637 (1998)
7 K. W. Chang and J. J. Wu, J. Phys. Chem. B, 106, 7796-7799 (2002)   DOI   ScienceOn
8 F. Hasegawa, T. Takahashi, K. Kubo and Y. Nannichi, Jpn. J. Appl. Phys., 26, 1555 (1987)   DOI
9 P. R. Tavernier, E. V. Etzkorn and D. R. Clarke, Inter. J. High Speed Electron., 14, 51-62 (2004)   DOI   ScienceOn
10 M. Kowski, I. Grzegory, B. Ucznik, S. Krukowski and M. Wroblewski, Phys. Stat. Sol. B, 241, 2685-2688 (2004)   DOI   ScienceOn
11 J. Akasaki, J. Cryst. Growth, 237-239, 905 (2002)   DOI   ScienceOn
12 T. I. Shin and D. H. Yoon, Cryst. Res. and Tech., 40, 827-831 (2005)   DOI   ScienceOn
13 K. M. Chang, J. Y. Chu and C. C. Cheng, Sol. Stat. Electro., 49, 1381-1386 (2005)   DOI   ScienceOn
14 P. Perlin, L. Marona, T. Swietlik, M. Leszozynski and P. Prystawko, Novel In-plane Semiconductor Lasers IV, SPIE, 5738, 72-79 (2005)   DOI
15 S. N. Mohammad, A. E. Botchkarev, A. Salvador, W. Kim, O. Aktas and H. Morkoc, Phil. Mag. B, 76, 131 (1997)   DOI   ScienceOn
16 C. Consejo, L. Konczewicz, S. Contreras, P. Lorenzini, Y. Cordier and C. Skiebiszewski, Phys. Stat. Sol. C, 2(4), 1438-1443 (2005)   DOI   ScienceOn
17 S. Fisher, G. Steude, D. M. Hofmann, F. Kruth, F. Anders, M. Topf, B. K. Meyer, F. Bertram, M. Schmidt, J. Christen, L. Eckey, J.Holst, A. Hoffmann, B. Mensching and B. Rauschenbach, J. Cryst. Growth, 189.190, 156 (1998)   DOI   ScienceOn
18 S. Nakamura and G. Fasol, The Blue Laser Diode, Springer, Tokyo, 1997
19 P. Perlin, T. Suski, M. Leszczynski, P. Prystawko, T. Swietlik, L. Marona, P. Wisniewski, R. Czernecki, G. Nowak, and S. Porowski, J. Cryst. Growth 281, 107 (2005)   DOI   ScienceOn
20 A. M. William and I. P. Jacques, J. Cryst. Growth, 178(1-2), 168 (1997)   DOI   ScienceOn