Browse > Article

Effects of thermal boundary conditions and microgravity environments on physical vapor transport of $Hg_2Cl_2-Xe$ system  

Kim, Geug-Tae (Department of Nano-Bio Chemical Engineering, Hannam University)
Kwon, Moo-Hyun (Department of Applied Chemistry, Woosuk University)
Lee, Kyong-Hwan (Climate Change Technology Research Division, Korea Institute of Energy Research)
Abstract
For the effects of the nonlinear temperature profiles and reduced-gravity conditions we conduct a two-dimensional numerical modeling and simulations on the physical vapor transport processes of $Hg_2Cl_2-Xe$ system in the horizontal orientation position. Our results reveal that: (1) A decrease in aspect ratio from 5 to 2 leads to an increasingly nonuniform interfacial distribution and enhances the growth rate by one-order magnitude for normal gravity and linear wall temperature conditions. (2) Increasing the molecular weight of component B, Xenon results in a reduction in the effect of solutal convection. (3) The effect of aspect ratio affects the interfacial growth rates significantly under normal gravity condition rather than under reduced gravitational environments. (4) The transition from the convection-dominated regime to the diffusion-dominated regime ranges arises near at 0.1g$_0$ for operation conditions under consideration in this study.
Keywords
Mercurous chloride; Convection; Xenon; Microgravity; Physical vapor transport;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 B.S. Jhaveri and F. Rosenberger, "Expansive convection in vapor transport across horizontal enclosures", J. Crystal Growth 57 (1982) 57   DOI   ScienceOn
2 A. Nadarajah, F. Rosenberger and J. Alexander, "Effects of buoyancy-driven flow and thermal boundary conditions on physical vapor transport", J. Crystal Growth 118 (1992) 49   DOI   ScienceOn
3 C. Mennetrier and W.M.B. Duval, "Thermal-solutal convection with conduction effects inside a rectangular enclosure", NASA Technical Memorandum 105371 (1991)
4 H. Wiedemeier and W. Palosz, "Vapor transport and crystal growth of GeSe under normal and high acceleration", J. Crystal Growth 119 (1992) 79   DOI   ScienceOn
5 W.M.B. Duval, 'Convection in the physical vapor transport process--II: Thermosolutal convection', J. Chem. Vapor Deposition 2 (1994b) 282
6 J.-G. Choi, K.-H. Lee, M.-H. Kwon and G.-T. Kim, "Effect of accelerational perturbations on physical vapor transport crystal growth under microgravity environments", J. Korean Crystal Growth and Crystal Technology 16 (2006) 203   ScienceOn
7 J.-G. Choi, K.-H. Lee and G.-T. Kim, "Effects of inert gas (Ne) on thermal convection of mercurous chloride system of $Hg_2Cl_2$ and Ne during physical vapor transport, J. Korean Crystal Growth and Crystal Technology 18 (2008) 225   ScienceOn
8 J.-G. Choi, K.-H. Lee and G.-T. Kim, "Generic studies on thermo-solutal convection of mercurous chloride system of Hg2Cl2 and Ne during physical vapor transport", J. Korean Crystal Growth and Crystal Technology 1 (2009) 39
9 N.B. Singh, M. Gottlieb, G.B. Brandt, A.M. Stewart, R. Mazelsky and M.E. Glicksman, "Growth and characterization of mercurous halide crystals:mercurous bromide system", J. Crystal Growth 137 (1994) 155   DOI   ScienceOn
10 N.B. Singh, R.H. Hopkins, R. Mazelsky and J.J. Conroy, "Purification and growth of mercurous chloride single crystals", J. Crystal Growth 75 (1970) 173   DOI   ScienceOn
11 S.V. Patankar, Numerical Heat Transfer and Fluid Flow (Hemisphere Publishing Corp., Washington D.C., 1980)
12 F. Rosenberger and G. Muller, "Interfacial transport in crystal growth, a parameter comparison of convective effects", J. Crystal Growth 65 (1983) 91   DOI   ScienceOn
13 B.L. Markham and F. Rosenberger, "Diffusive-convective vapor transport across horizontal and inclined rectangular enclosures", J. Crystal Growth 67 (1984) 241   DOI   ScienceOn
14 N. Ramachandran, C.H. Su and S.L. Lehoczky, "Modeling studies of PVT growth of ZnSe: current status and future course", J. Crystal Growth 208 (2000) 269   DOI   ScienceOn
15 W. Palosz, "Physical vapor transport of lead telluride", J. Crystal Growth 216 (2000) 273   DOI   ScienceOn
16 G.T. Kim, W.M.B. Duval and M.E. Glicksman "Thermal convection in physical vapour transport of mercurous chloride (Hg2Cl2) for rectangular enclosures", Modelling. Simul. Mater. Sci. Eng. 5 (1997) 289   DOI   ScienceOn
17 G.T. Kim, W.M.B. Duval and M.E. Glicksman 'Effects of asymmetric temperature profiles on thermal convection during physical vapor transport of $Hg_2Cl_2$', Chem. Eng. Comm. 162 (1997) 45   DOI   ScienceOn
18 D.W. Mackowski, V.R. Rao, D.G. Walker and R.W. Knight, "Numerical investigation of the effects of thermal creep in physical vapor transport", J. Crystal Growth 179 (1997) 297   DOI   ScienceOn
19 G.-T. Kim and K.-H. Lee, "Parametric studies on convection during the physical vapor transport of mercurous chloride (Hg2Cl2)", J. Korean Crystal Growth and Crystal Technology 14 (2004) 281
20 D.W. Greenwell, B.L. Markham and F. Rosenberger, "Numerical modeling of diffusive physical vapor transport in cylindrical ampoules", J. Crystal Growth 51 (1981) 413   DOI   ScienceOn
21 Ching-Hua Su, M.A. George, W. Palosz, S. Feth and S.L. Lehoczky, "Contactless growth of ZnSe single crystals by physical vapor transport", J. Crystal Growth 213 (2000) 267   DOI   ScienceOn
22 P.A. Tebbe, S.K. Loyalka and W.M.B. Duval, "Finite element modeling of asymmetric and transient flow flieds during physical vapor transport", Finite Elements in Analysis and Design 40 (2004) 1499   DOI   ScienceOn
23 S.V. Patankar, Numerical Heat Transfer and Fluid Flow (Hemisphere Publishing Corp., Washington D.C., 1980)
24 D.K. Edwards, "Suppression of cellular convection by lateral walls", J. Heat Transfer 91 (1972) 145
25 W.M.B. Duval, "Convection in the physical vapor transport process--I: Thermal convection", J. Chem. Vapor Deposition 2 (1994a) 188
26 H. Zhou, A. Zebib, S. Trivedi and W.M.B. Duval, "Physical vapor transport of zinc-telluride by dissociative sublimation", J. Crystal Growth 167 (1996) 534   DOI   ScienceOn
27 N.B. Singh, R. Mazelsky and M.E. Glicksman, "Evaluation of transport conditions during PVT: mercurous chloride system", PhysicoChemical Hydrodynamics 11 (1989) 41
28 G.T. Kim, "Convective-diffusive transport in mercurous chloride $(Hg_2Cl_2)$ crystal growth", J. Ceramic Processing Research 6 (2005) 110
29 F. Rosenberger, J. Ouazzani, I. Viohl and N. Buchan, "Physical vapor transport revised", J. Crystal Growth 171 (1997) 270   DOI   ScienceOn
30 D. Zhuang, Z.G. Herro, R. Schlesser and Z. Sitar, "Seeded growth of AlN single crystals by physical vapor transport", J. Crystal Growth 287 (2006) 372   DOI   ScienceOn
31 W.M.B. Duval, N.E. Glicksman and B. Singh, "Physical vapor transport of mercurous chloride crystals; design of a microgravity experiment", J. Crystal Growth 174 (1997) 120   DOI   ScienceOn
32 Edward R. Letts, James S. Speck and Shuji Nakamura, "Effect of indium on the physical vapor transport growth of AlN", J. Crystal Growth 311 (2009) 1060   DOI   ScienceOn
33 G.P. Extremet, P. Bontoux and B. Roux, "Effect of temperature gradient locally applied on a long horizontal cavity", Int'l J. Heat and Fluid Flow 8 (1987) 26   DOI   ScienceOn
34 N.B. Singh, W.M.B. Duval, A.S.W. Thomas, M.E. Glicksman, J.D. Adam, H. Zhang, J.C. Goldmbeck, C. Watson, R. Naumman, A.E. Nelson, C. Cacioppo, J. Griffin, M. Jugrav, T. Rolin, J. Seaquist and N. Daniel, "Microgravity experiment to understand the effect of convection on PVT crystal growth", Adv. Space Res. 32 (2003) 211   DOI   ScienceOn
35 G.T. Kim, W.M.B. Duval, N.B. Singh and M.E. Glicksman "Thermal convective effects on physcial vapor transport growth of mercurous chloride crystals (Hg2C12) for axisymmetric 2-D cylindrical enclosure", Modelling. Simul. Mater. Sci. Eng. 3 (1995) 331   DOI   ScienceOn
36 W.M.B. Duval, "Transition to chaos in the physical vapor transport process--I: fluid mechanics problem phenomena in microgravity", Fluids Eng. Div. ASME 175 (1993) 51
37 Ching-Hua Su, S. Feth and S.L. Lehoczky, "In situ partial pressure measurements and visual observation during crystal growth of ZnSe by seeded physical vapor transport", J. Crystal Growth 209 (2000) 687   DOI   ScienceOn
38 I. Catton and D.K. Edwards, "Effects of side walls on natural convection between horizontal plates heated from below", J. Heat Transfer 89 (1967) 259
39 C. Mennetrier, W.M.B. Duval and N.B. Singh, "Physical vapor transport of mercurous chloride under a non linear thermal profile", NASA Technical Memorandum 105920 (1992)
40 J. Lu, Z.-B. Zhang and Q.-S. Chen, "Numerical simulation of the flow field and concentration distribution in the bulk growth of silicon carbide crystals", J. Crystal Growth 292 (2006) 519   DOI   ScienceOn
41 R.B. Bird, W.E. Stewart and E.N. Lightfoot, Transport Phenomena (John Wiley and Sons, New York, NY, 1960)
42 B.L. Markham, D.W. Greenwell and F. Rosenberger, "Numerical modeling of diffusive-convective physical vapor transport in cylindrical vertical ampoules", J. Crystal Growth 51 (1981) 426   DOI   ScienceOn
43 J.-S. Kim, Sudhir B. Trivedi, Jolanta Soos, Neelam Gupta and Witold Palosz, "Growth of $Hg_2Cl_2$ and $Hg_2Br_2$ single crystals by physical vapor transport", J. Crystal Growth 310 (2008) 2457   DOI   ScienceOn
44 S.J. Yosim and S.W. Mayer, "The mercury-mercuric chloride system", J. Phys. Chem. 60 (1960) 909   DOI