• Title/Summary/Keyword: Vacuum

Search Result 17,128, Processing Time 0.039 seconds

Simulation of Vacuum Characteristics in Semiconductor Processing Vacuum System by the Combination of Vacuum Pumps (진공펌프 조합에 의한 반도체공정 진공시스템 진공특성 전산모사)

  • Kim, Hyung-Taek;Kim, Dae-Yeon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.6
    • /
    • pp.449-457
    • /
    • 2011
  • Effect of pump combinations on the vacuum characteristics of vacuum system was simulated for optimum design of system. In this investigation, the feasibility of modelling mechanism for VacSimMulti simulator was proposed. Simulation results of various pumping combinations showed the possibilities and reliabilities of simulation for the performance of vacuum system in specific semiconductor processing. Simulation of roughing pump presented the expected pumping behaviors based on commercial specifications of employed pumps. Application of booster pump exhibited the high pumping efficiency for middle vacuum range. Combinations of optimum backing pump for diffusion and turbo vacuum system were obtained. And, the predictable characteristics of process application of both simulated systems were also acquired.

Vacuum system design of a 10 ton/day class air liquefaction cold box for liquid air energy storage

  • Sehwan, In;Juwon, Kim;Junyoung, Park;Seong-Je, Park;Jiho, Park;Junseok, Ko;Hankil, Yeom;Hyobong, Kim;Sangyoon, Chu;Jongwoo, Kim;Yong-Ju, Hong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.4
    • /
    • pp.65-70
    • /
    • 2022
  • A vacuum system is designed for thermal insulation of a 10 ton/day class air liquefaction cold box for liquid air energy storage. The vacuum system is composed of a turbomolecular pump, a backing pump and vacuum piping for the vacuum pumps. The turbomolecular pump is in combination with the backing pump for pumping capacity. The vacuum piping is designed with system installation conditions, such as distance from the cold box, connections to vacuum pumps and installation space. The capacity of the vacuum pump combination, namely pumping speed, is determined by analysis of the vacuum system, and pump-down time to 1×10-5 mbar is estimated. Vacuum piping conductance, system pumping speed and outgassing rate are calculated for the pump-down time with the ultimate pumping speed range of the vacuum pump combination of 1400 - 2300 l/s. Although the pump-down time gets shorter by larger capacity vacuum pumps, it mainly depends on target vacuum degree and outgassing rate in the cold box. The pump-down time is estimated as 3 - 6 hours appropriate for cold box operation for the pumping speed range. Considering the outgassing rate has uncertainty, the vacuum pump combination with pumping speed of 1900 l/s is chosen for the vacuum system, which is middle value of the pumping speed range.

Simulation of Vacuum Characteristics by Applications of Vacuum Valves in Display Processing (디스플레이공정 진공시스템 밸브응용에 따른 진공특성 전산모사)

  • Kim, Hyung-Taek
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.2
    • /
    • pp.77-83
    • /
    • 2012
  • Effect of valve conductance on performance of vacuum system was simulated for optimum design of vacuum system. In this investigation, the feasibility of modeling mechanism for VacSimMulti simulator was proposed. Application specific design of vacuum system is required to meet the particular process conditions for various industrial implementations of vacuum equipments. Geometry and length, diameter of vacuum valve were modeled as simulation modeling variables for conductance effects. Series vacuum system was modeled and simulated with varied dimensions and structures of exhaust valves. Variation of valve diameter showed the more significant effects on vacuum characteristics than that of pipeline length variations. It was also observed that the aperture structure of valve had the superior vacuum characteristics among the modeled systems.

Technology Trends in Vacuum Pumping

  • Ormrod, Stephen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.59-59
    • /
    • 2012
  • Vacuum pumping remains central to the performance and economy of many manufacturing processes, scientific instruments and scientific research. More vacuum is being used in many of the latest or leading edge manufacturing processes: Current examples include 3D semiconductor devices, EUV lithography, 450 mm silicon wafers, AMOLED displays, LEDs, Lithium-ion batteries and steel degassing. In other applications, vacuum pumping technology developments have led to much lower product costs which for example have enabled mass spectrometers to become a ubiquitous tool is life science research. Vacuum pumps have continuously evolved during the past 100 years of vacuum-based industrial processing but remain a key component which is often on the critical path of process and product improvements. This is especially so in the growing number of applications where the pumps are highly stressed. This presentation outlines significant developments in vacuum that have brought about this progress. The likely course of continued improvements is discussed in terms of increased performance and reliability, robust by-product handling, better cost efficiency and reduced environmental impact especially power consumption.

  • PDF

Analysis of High Vacuum System Based on the Applications of Vacuum Materials

  • Kim, Hyung-Taek
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.6
    • /
    • pp.334-338
    • /
    • 2013
  • In this study, the outgassing effects of selected vacuum materials on the vacuum characteristics were simulated by the $VacSim^{Multi}$ simulation tool. This investigation examined the feasibility of reliably simulating the outgassing characteristics of common vacuum chamber materials (aluminum, copper, stainless steel, nickel plated steel, Viton A). The optimum design factors for these vacuum systems were suggested based on the simulation results. The baking-out effects of the modeled systems and materials on the performance of the vacuum system were also analyzed. The simulation predicted that the overall outgassing effect was more significant in the turbomolecular pump system than in the diffusion pump system and that the utilization of a booster pump has a greater effect on the evacuation time than on the ultimate pressure.

Simulation of outgassing effects of vacuum materials on vacuum characteristics

  • Kim, Hyung-Taek;Kim, Young-Suk
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.1
    • /
    • pp.7-12
    • /
    • 2009
  • The outgassing effects of selected vacuum materials on the vacuum characteristics were simulated by the $VacSim^{Multi}$ simulation tool. This investigation examined the feasibility of reliably simulating the outgassing characteristics of common vacuum chamber materials (aluminum, copper, stainless steel, nickel plated steel, Viton A). The optimum design factors for these vacuum systems were suggested based on the simulation results. The baking-out effects of the modeled systems and materials on the performance of the vacuum system were also analyzed. The simulation predicted that the overall outgassing effect was more significant in the TMP system than in the DP system and that the utilization of a booster pump has a greater effect on the evacuation time than on the ultimate pressure.

  • PDF

Vacuum Technology for EUV Lithography (EUV Lithography를 위한 진공 기술)

  • Joo, Jang Hun
    • Vacuum Magazine
    • /
    • v.1 no.3
    • /
    • pp.14-20
    • /
    • 2014
  • Lithography is widely recognized as one of the key steps in the manufacture of ICs and other devices and/or structures. However, as the dimensions of features made using lithography become smaller, lithography is becoming a more critical factor for enabling miniature IC or other devices and/or structures to be manufactured. As explained above, to make it happen, many other important technologies will have to be addressed. The vacuum technology is one of them and the engineers and experts are paying attention on vacuum technology including vacuum pumps. Especially high Vacuum(HV) and Ultra high vacuum(UHV) are not easy and not simple one. So the manpower who can understand vacuum technology with long experience in vacuum industry is important with basic study.

Simulations of Effects of Variable Conductance Throttle Valve on the Characteristics of High Vacuum System

  • Kim, Hyung-Taek;Cho, Han-Ho
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.7 no.2
    • /
    • pp.28-35
    • /
    • 2015
  • Thin film electronic devices which brought the current mobile environment could be fabricated only under the high quality vacuum conditions provided by high vacuum systems. Especially for the development of advanced thin film devices, constant high quality vacuum as the deposition pressure is definitely needed. For this purpose, the variable conductance throttle valves were employed to the high vacuum system. In this study, the effects of throttle valve applications on vacuum characteristics were simulated to obtain the optimum design modelling of variable conductance of high vacuum system. Commercial simulator of vacuum system, $VacSim^{(multi)}$, was used on this investigation. Reliability of employed simulator was verified by the simulation of the commercially available models of high vacuum system. Simulated vacuum characteristics of the proposed modelling were agreed with the observed experimental behaviour of real systems. Pressure limit valve and normally on-off control valve were schematized as the modelling of throttle valve for the constant process-pressure of below $10^{-3}torr$. Simulation results were plotted as pump down curve of chamber, variable valve conductance and conductance logic of throttle valve. Simulated behaviors showed the applications of throttle valve sustained the process-pressure constantly, stably, and reliably.

Screw-type Dry Vacuum Pump Technology and Application in Semiconductor Process (스크류 형 건식진공펌프 기술 현황 및 응용)

  • Noh, Myung-Keun;Hwang, Tae-Kyoung;Park, Jea-Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.4
    • /
    • pp.292-301
    • /
    • 2008
  • As the industry requiring clean vacuum condition like semiconductor and display manufacturing expands, importance of dry vacuum pumps has been increased. Screw-type dry vacuum pump, occupying major share with multi-stage roots pump in dry-pump market, has big strength specially in harsh application area accompanying serious by-product accumulation. Recently, development in screw-type pump has been focused on improving energy efficiency. In this article, technology of screw-type dry vacuum pump is reviewed and the requirement for actual industrial application is considered. In addition, the expected evolution for screw-type dry pump in near future is also described.