• Title/Summary/Keyword: VCSEL(Vertical Cavity Surface Emitting Laser)

Search Result 29, Processing Time 0.028 seconds

Design of 850 nm Vertical-Cavity Surface-Emitting Lasers by Using a Transfer Matrix Method (전달 행렬 방법을 이용한 850 nm수직 공진기 레이저 구조의 최적설계)

  • Kim Tae-Yong;Kim Sang-Bae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.1
    • /
    • pp.35-46
    • /
    • 2004
  • In comparison with edge-emitting lasers(EELs), predicting the output power and slope efficiency of Vertical-Cavity Surface-Emitting Lasers(VCSELs) is very difficult due to the absorption loss in DBR layers. However, by using transfer matrix method(TMM), we've made possible to calculate such parameters of multi-layer structures like VCSELs. In this paper, we've calculated the threshold gain, threshold current and slope efficiency through the methodology based on TMM. Also TMM is the way of customizing the VCSEL structure for the desired threshold current and slope efficiency by changing the number of DBR mirror layers.

Development of UV molding Process to Integrate Microlens Array on VCSEL Array for Optical Communication (광통신 용 VCSEL Array상에 Microlens Array를 집적하기 위한 UV성형 공정기술 개발)

  • 한정원;김석민;김홍민;이지승;임지석;강신일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.840-843
    • /
    • 2004
  • UV molding is a process for integrating micro/nano polymeric optical components on optoelectronic modules. In the present study, a microlens array for vertical cavity surface emitting laser(VCSEL) to fiber coupling was designed, integrated and tested. At the design stage, design variables ware optimized to maximize the coupling efficiency, and tolerance analysis was carried out. At the integration stage, the UV transparent mold was fabricated and the microlens array on VCSEL array was integrated by UV molding process. Finally the coupling efficiency of VCSEL to fiber was measured and analyzed.

  • PDF

Estimating the Thickness Errors in Vertical-Cavity Surface-Emitting Laser Structures from Optical Reflection spectra (반사 스펙트럼을 이용한 VCSEL 에피층의 두께 오차 평가)

  • 김남길;김상배
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.8
    • /
    • pp.572-579
    • /
    • 2003
  • By comparing the measured optical reflection spectra with calculated one by the transfer-matrix method (TMM) in epitaxial wafers for vertical-cavity surface-emitting lasers (VCSELs), we have estimated the systematic thickness errors in a simple and nondestructive way. The experimentally confirmed technique is based on the finding that the shape of the reflection spectra depends mainly on a newly defined single parameter, the effective error in the n-mirror layers, and the thickness error in the active cavity simply shifts the Fabry-Perot resonance wavelength. Also shown is that the proposed method is reliable when the relative standard deviation of the random thickness errors is less than 0.005. Because reflection spectra are routinely measured, we can easily estimate the thickness errors nondestructively with high spatial resolution.

High Power and Single Mode Lasing Characteristics in Vertical Cavity Surface Emitting Laser by Varying Photonic Bandgap Structures (광 결정 구조 변수에 따른 고출력 단일모드 수직공진 표면발광 레이저의 발진 특성)

  • Lee, Jin-Woong;Hyun, Kyung-Sook;Shin, Hyun-Ee;Kim, Hee-Dae
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.6
    • /
    • pp.339-345
    • /
    • 2009
  • The high power and single mode vertical cavity surface emitting laser(VCSEL)s with photonic crystal structures have been proposed and fabricated by reducing substantially the hole numbers used in the photonic crystal structures. It is found that only six holes enable VCSELs to operate a single mode and the reliability can be enhanced by filling the holes with polyimide. The single mode lasing characteristics were analyzed by varying the oxide aperture and the hole diameter in photonic crystal structures. As a result, the single mode lasing can be stably obtained in the photonic crystal vertical cavity surface emitting lasers.

Optimum Implant Depth and Its Determination in Implanted Vertical Cavity Surface Emitting Lasers (임플랜트된 표면 방출형 레이저에서 최적 임플랜트 깊이와 최적 깊이 판정 방법)

  • 안세환;김상배
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.8
    • /
    • pp.45-50
    • /
    • 2004
  • The characteristics and reliability of implanted VCSELs are greatly influenced by the thickness of the semi-insulating layer made by ion implantation for the current confinement. We propose a simple and purely electrical method of estimating the optimum implant depth, and find that the implant front should be located 2-DBR periods above the 1 - λ cavity in order to obtain simultaneously the low threshold current and high reliability.

Development of optical transmission module for VCSEL (수직 공진형 표면 발광 레이저용 광전송 모듈 개발)

  • Cho Kyeng-Jai;Jeong Jun-Ho;Lee Jae-Su
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.7
    • /
    • pp.1576-1580
    • /
    • 2004
  • The recent trend of information communication is to focus on improving communication services in order to satisfy the customer's desire for various information. Optical transducers of Local Area Network use 850nm or 1310nm among wavelength ranges and LD as a light source. However, Vertical Cavity Surface Emitting Laser(VCSEL) which is very excellent to deal with data processing is used at long wavelength or Gbps. In this paper, after basic optical characteristics were introduced a optical transmission module was developed to be operated over GHz and its transmission characteristics were analyzed at 2.5GHz and 3GHz with pulse pattern generator.

Evaluation of 1.3-㎛ Wavelength VCSELs Grown by Metal Organic Chemical Vapor Deposition for 10 Gb/s Fiber Transmission

  • Park, Chanwook;Lee, Seoung Hun;Jung, Hae Won;An, Shinmo;Lee, El-Hang;Yoo, Byueng-Su;Roh, Jay;Kim, Kyong Hon
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.313-317
    • /
    • 2012
  • We have evaluated a 1.3 ${\mu}m$ vertical-cavity surface-emitting laser (VCSEL), whose bottom mirror and central active layer were grown by metal organic chemical vapor deposition (MOCVD) and whose top mirror was covered with a dielectric coating, for 10 Gb/s data transmission over single-mode fibers (SMFs). Successful demonstration of error-free transmission of the directly modulated VCSEL signals at data rate of 10 Gb/s over a 10 km-long SMF was achieved for operating temperatures from $20^{\circ}C$ to $60^{\circ}C$ up to bit-error-rate (BER) of $10^{-12}$. The DC bias current and modulation currents are only 7 mA and 6 mA, respectively. The results indicate that the VCSEL is a good low-power consuming optical signal source for 10 GBASE Ethernet applications under controlled environments.

Design of Dumbbell-type CPW Transmission Lines in Optoelectric Circuit PCBs for Improving Return Loss (광전회로 PCB에서 반사특성 개선을 위한 덤벨 형태의 CPW 전송선 설계)

  • Lee, Jong-Hyuk;Kim, Hwe-Kyung;Im, Young-Min;Jang, Seung-Ho;Kim, Chang-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4A
    • /
    • pp.408-416
    • /
    • 2010
  • A dumbbell-type CPW transmission-line structure has been proposed to improve the return loss of the transmission line between a driver IC and flip-chip-bonding VCSEL(Vertical Cavity Surface Emitting Laser) in a hybrid opto-electric circuit board(OECB). The proposed structure used a pair of dummy ground solder balls on the ground lines for flip-chip bonding of the VCSEL and designed the dumbbell-type CPW transmission line to improve reflection characteristics. The simulated results revealed that the return loss of the dumbbell-type CPW transmission line was 13-dB lower than the conventional CPW transmission line. A 4-dB improvement in the return loss was obtained using the dummy ground solder balls on the ground lines. The variation rate of the reflection characteristic with the variation of terminal impedances of the transmission line (at the output terminal of the driver IC and the input terminal of the VCSEL) is about ${\pm}2.5\;dB$.

Improved Uniformity of GaAs/AlGaAs DBR Using the Digital Alloy AlGaAs Layer (디지털 합금 AlGaAs층을 이용하여 제작된 GaAs/AlGaAs DBR의 균일도 향상)

  • Cho, N.K.;Song, J.D.;Choi, W.J.;Lee, J.I.;Jeon, Heon-Su
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.3
    • /
    • pp.280-286
    • /
    • 2006
  • A distributed Bragg reflector (DBR) for the application of $1.3{\mu}m$ vertical cavity surface emitting laser (VCSEL) has grown by digital-alloy AlGaAs layer using the molecular beam epitaxy (MBE) method. The measured reflection spectra of the digital-alloy AlGaAs/GaAs DBR have uniformity in 0.35% over the 1/4 of 3-inch wafer. Furthermore, the TEM image showed that the composition and the thickness of the digital-alloy AlGaAs layer in AlGaAs/GaAs DBR was not affected by the temperature distribution over the wafer whole surface. Therefore, the digital-alloy AlGaAs/GaAs DBR can be used to get higher yield of VCSEL with the active medium of InAs quantum dots whose gain is inhomogeneously broadened.