Browse > Article
http://dx.doi.org/10.3807/JOSK.2012.16.3.313

Evaluation of 1.3-㎛ Wavelength VCSELs Grown by Metal Organic Chemical Vapor Deposition for 10 Gb/s Fiber Transmission  

Park, Chanwook (Department of Physics, Inha University)
Lee, Seoung Hun (Department of Physics, Inha University)
Jung, Hae Won (Department of Physics, Inha University)
An, Shinmo (School of Information and Communication Engineering, Inha University)
Lee, El-Hang (School of Information and Communication Engineering, Inha University)
Yoo, Byueng-Su (RayCan Co., Ltd.)
Roh, Jay (RayCan Co., Ltd.)
Kim, Kyong Hon (Department of Physics, Inha University)
Publication Information
Journal of the Optical Society of Korea / v.16, no.3, 2012 , pp. 313-317 More about this Journal
Abstract
We have evaluated a 1.3 ${\mu}m$ vertical-cavity surface-emitting laser (VCSEL), whose bottom mirror and central active layer were grown by metal organic chemical vapor deposition (MOCVD) and whose top mirror was covered with a dielectric coating, for 10 Gb/s data transmission over single-mode fibers (SMFs). Successful demonstration of error-free transmission of the directly modulated VCSEL signals at data rate of 10 Gb/s over a 10 km-long SMF was achieved for operating temperatures from $20^{\circ}C$ to $60^{\circ}C$ up to bit-error-rate (BER) of $10^{-12}$. The DC bias current and modulation currents are only 7 mA and 6 mA, respectively. The results indicate that the VCSEL is a good low-power consuming optical signal source for 10 GBASE Ethernet applications under controlled environments.
Keywords
Vertical-cavity surface-emitting laser (VCSEL); InAlGaAs/InP; Monolithic epitaxial growth; Metal-organic chemical vapor deposition (MOCVD); Fiber transmission;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 W. Hofmann, M. Ortsiefer, E. Rönneberg, C. Neumeyr, G. Böhm, and M.-C. Amann, "1.3 ${\mu}m$ InGaAlAs/InP VCSEL for 10G ethernet," in Proc. IEEE 21st International Semiconductor Laser Conference 2008 (ISLC 2008) (Sorrento, Italy, Sept. 2008), pp. 11-12.
2 W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Böhm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M.-C. Amann, "10-Gb/s data transmission using BCB passivated 1.55-${\mu}m$ InGaAlAs -InP VCSELs," IEEE Photon. Technol. Lett. 18, 424-426 (2006).   DOI
3 C.-K. Lin, D. P. Bour, J. Zhu, W. H. Perez, M. H. Leary, A. Tendon, S. W. Corzine, and M. R. T. Tan, "High temperature continuous-wave operation of 1.3 and 1.55-${\mu}m$ VCSELs with InP/air-gap DBRs," IEEE J. Select. Topics Quantum Electron. 9, 1415-1421 (2003).   DOI   ScienceOn
4 M. Ortsiefer, S. Baydar, K. Windhorn, G. Böhm, J. Rosskopf, R. Shau, E. Ronneberg, W. Hofmann, and M.-C. Amann, "2.5-mW single-mode operation of 1.55-${\mu}m$ buried tunnel junction VCSELs," IEEE Photon. Technol. Lett. 17, 1596-1598 (2005).   DOI   ScienceOn
5 V. Iakovlev, G. Suruceanu, A. Caliman, A. Mereuta, A. Mircea, C.-A. Berseth, A. Syrbu, A. Rudra, and E. Kapon, "High-performance single-mode VCSELs in the 1310-nm waveband," IEEE Photon. Technol. Lett. 17, 947-949 (2005).   DOI   ScienceOn
6 A. Mircea, A. Calinan, V. Iakovlev, A. Mereuta, G. Suruceanu, C.-A. Berseth, P. Royo, A. Syrbu, and E. Kapon, "Cavity mode-gain peak tradeoff for 1320-nm wafer-fused VCSELs with 3-mW single-mode emission power and 10-Gb/s modulation speed up to $70^{\circ}C$," IEEE Photon. Technol. Lett. 19, 121-123 (2007).   DOI   ScienceOn
7 M.-R. Park, O.-K. Kwon, W.-S. Han, K.-H. Lee, S.-J. Park, and B.-S. Yoo, "All-epitaxial InAlGaAs-InP VCSELs in the 1.3-1.6-${\mu}m$ wavelength range for CWDM band applications," IEEE Photon. Technol. Lett. 18, 1717-1719 (2006).   DOI   ScienceOn
8 J.-H. Shin, B.-S. Yoo, W.-S. Han, O.-K. Kwon, Y.-G. Ju, and J.-H. Lee, "CW operation and threshold characteristics of all-monolithic InAlGaAs 1.55 ${\mu}m$ VCSELs grown by MOCVD," IEEE Photon. Technol. Lett. 14, 1031-1033 (2002).   DOI   ScienceOn
9 J.-H. Kim, B.-S. Yoo, J.-H. Shin, W.-S. Han, O.-K. Kwon, Y.-G. Ju, and H.-W. Song, "Fabrication method of densely spaced 1.55 ${\mu}m$ multiple-wavelength vertical-cavity surfaceemitting laser array structure for the application of dense wavelength division multiplexing," Jpn. J. Appl. Phys. 43, 137-139 (2004).   DOI
10 O. K. Kwon, B. S. Yoo, J. H. Shin, J. H. Baek, and B. Lee, "Pulse operation and threshold characteristics of 1.55${\mu}m$ InAlGaAs-InAlAs VCSEL's," IEEE Photon. Technol. Lett. 12, 1132-1134 (2000).   DOI   ScienceOn
11 H.-W. Song, W. S. Han, J.-H. Kim, O.-K. Kwon, Y.-G. Ju, J.-H. Lee, S.-H. KoPark, and S.-G. Kang, "1.55 ${\mu}m$ bottomemitting InAlGaAs VCSELs with $Al_{2}O_{3}/a$-Si thin-film pairs as top mirror," Electron. Lett. 42, 808-809 (2006).   DOI   ScienceOn
12 H.-W. Song, W. S. Han, J. Kim, J.-H. Kim, and S.-H. KoPark, "Long-wavelength InAlGaAs VCSELs with $Al_{2}O_{3}$ embedded current-confinement apertures," Electron. Lett. 40, 868-869 (2004).   DOI   ScienceOn
13 W. Hofmann, M. Müller, P. Wolf, A. Mutig, T. Gründl, G. Böhm, D. Bimberg, and M.-C. Amann, "40 Gbit/s modulation of 1550 nm VCSEL," Electron. Lett. 47, 270-271 (2011).   DOI   ScienceOn
14 K. Prince, M. Ma, T. B. Gibbon, C. Neumeyr, E. Rönneberg, M. Ortsiefer, and I. T. Monroy, "Free-running 1550 nm VCSEL for 10.7 Gb/s transmission in 99.7 km PON," J. Opt. Commun. Networks 3, 399-403 (2011).   DOI   ScienceOn
15 J. J. Kim, K. H. Kim, M. H. Lee, H. S. Lee, E.-H. Lee, O.-K. Kwon, J. Ron, and B.-S. Yoo, "2.5-Gb/s hybrid single-mode and multimode fiber transmission of 1.5-${\mu}m$ wavelength VCSEL," IEEE Photon. Technol. Lett. 19, 297-299 (2007).   DOI   ScienceOn
16 E. Kapon and A. Sirbu, "Long-wavelength VCSELS; power-efficient answer," Nature Photon. 3, 27-29 (2009).   DOI
17 K. Prince, M. Ma, T. B. Gibbon, C. Neumeyr, E. Rönneberg, M. Ortisiefer, and I. T. Monroy, "Free-running 1550 nm VCSEL for 10.7 Gb/s transmission in 99.7 km PON," J. Opt. Commun. Networks 3, 399-403 (2011).   DOI   ScienceOn
18 J.-C. Charlier and S. Kruger, "Long-wavelength VCSELs ready to benefit 40/100 GbE modules," Lightwave 28, 18-22 (2011).