• Title/Summary/Keyword: V-Skew

Search Result 38, Processing Time 0.023 seconds

A high-resolution synchronous mirror delay using successive approximation register (연속 근사 레지스터를 이용한 고정밀도 동기 미러 지연 소자)

  • 성기혁;김이섭
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.10
    • /
    • pp.63-68
    • /
    • 2004
  • A high-resolution synchronous mirror delay (SMD) is proposed in order to reduce the clock skew between the external clock and the infernal clock of a chip. The proposed SMD reduces the clock skew in two steps. Coarse locking is achieved by the SMD. Fine locking is achieved by the successive approximation register-controlled DLL. The total locking time is 10 clock cycles. Simulation results show that the proposed SMD operates with 50psec clock skew at 182MHz and consumes 17.5mW at 3.3V supply voltage in a 0.35 um 1-poly 4-metal CMOS technology.

A Study on Design of 50kW PMSG for Micro-grid Application (마이크로그리드용 50kW급 PMSG 설계에 관한 연구)

  • Jeong, Moon-Seon;Moon, Chae-Joo;Kim, Hyoung-Gil;Chang, Young-Hak;Park, Tae-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.4
    • /
    • pp.527-536
    • /
    • 2014
  • In this paper, the 50kW aerogenerator which is applicable to the microgrid was designed and analyzed by using commercial simulation program Maxwell 2D. Particularly, the suggested PMSG to reduce the cogging torque introduced the offset and skew concept. The suggested optimal value of offset and skew was decided by 2mm and 60 degree of electric angle. The simulation results of the PMSG when load operation condition showed the average harmonic distortion 1.3%, voltage 322.41V, current 94.95A, and iron loss 9.73W, eddy current loss 73.68W, copper loss 3.52kW. The capacity of aerogenerator calculated 61.56kW, and the suggested design process can be applied to higher capacity generator.

A Wide - Range Dual-Loop DLL with Programmable Skew - Calibration Circuitry for Post Package (패키지후 프로그램을 이용 스큐 수정이 가능한 광범위한 잠금 범위를 가지고 있는 이중 연산 DLL 회로)

  • Choi, Sung-Il;Moon, Gyu;Wee, Jae-Kyung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.6
    • /
    • pp.408-420
    • /
    • 2003
  • This paper describes a Delay Locked Loop (DLL) circuit having two advancements : 1) a dual loop operation for a wide lock-range and 2) programmable replica delays using antifuse circuitry and internal voltage generator for a post-package skew calibration. The dual loop operation uses information from the initial time-difference between reference clock and internal clock to select one of the differential internal loops. This increases the lock-range of the DLL to the lower frequency. In addition, incorporation with the programmable replica delay using antifuse circuitry and internal voltage generator allows for the elimination of skews between external clock and internal clock that occur from on and off-chip variations after the package process. The proposed DLL, fabricated on 0.16m process, operates over the wide range of 42MHz - 400MHz with 2.3v power supply. The measured results show 43psec peak-to-peak jitter and 4.71psec ms jitter consuming 52㎽ at 400MHz.

CONJUGATE LOCI OF 2-STEP NILPOTENT LIE GROUPS SATISFYING J2z = <Sz, z>A

  • Jang, Chang-Rim;Lee, Tae-Hoon;Park, Keun
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.6
    • /
    • pp.1705-1723
    • /
    • 2008
  • Let n be a 2-step nilpotent Lie algebra which has an inner product <, > and has an orthogonal decomposition $n\;=z\;{\oplus}v$ for its center z and the orthogonal complement v of z. Then Each element z of z defines a skew symmetric linear map $J_z\;:\;v\;{\longrightarrow}\;v$ given by <$J_zx$, y> = for all x, $y\;{\in}\;v$. In this paper we characterize Jacobi fields and calculate all conjugate points of a simply connected 2-step nilpotent Lie group N with its Lie algebra n satisfying $J^2_z$ = A for all $z\;{\in}\;z$, where S is a positive definite symmetric operator on z and A is a negative definite symmetric operator on v.

Analysis of Signal Distortion for Ultra High Definition Video Pattern Control (UHD급 영상패턴 제어를 위한 전송선로의 신호 왜곡현상 분석)

  • Son, Hui-Bae;Jin, Jong-Ho;Rhee, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.10
    • /
    • pp.1197-1205
    • /
    • 2014
  • Recently signal transmission of ultra high-definition(4K-UHD) video system is transferred as uncompressed high speed data. However, this has a limit to compose the system because EMI between separate cables of high speed interface section and skew bring distortion of the video signal and jitter. In this paper we applied V-by-One HS interface technique to transfer uncompressed high speed data. We analyzed HSD(High Speed Differential) transmission line signal integrity. Also we applied RF transmission technique instead of UHD video pattern control interface PCB design. When we measured V-by-One HS video signal of designed 4K-UHD class signal generator, We found that the transmission performance has been signal standard.

Perturbed Finite Element Analysis of Fold Bifurcations in Load/unload Bard Disk Drive Systems (Load/Unload 하드디스크 드라이브 시스템에의 Fold Bifurcations의 교란 유한요소 해석)

  • Hwang Pyung;Khan Polina V.
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.177-178
    • /
    • 2005
  • The load/unload behavior of the hard disk drive slider is studied in terms of the air bearing static characteristics. The numerical continuation methods are applied to calculate suspension force - equilibrium position curve. The critical preloads of the femto size slider are analyzed. The hi-stability conditions are depicted on the skew angle - preload diagram. The perturbation method is used to check the stability of the solution branches.

  • PDF

Evaluation of peak-fitting software for magnesium quantification through k0-instrumental neutron activation analysis

  • Dasari, Kishore B.;Cho, Hana;Jacimovic, Radojko;Park, Byung-Gun;Sun, Gwang-Min
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.462-468
    • /
    • 2022
  • The selection and effective utilization of peak-fitting software for conventional gamma-ray spectrum analysis is significant for accurate determination of the mass fraction of elements, particularly in complex peak regions. Majority of the peak-fitting programs can derive similar peak characteristics for singlet peaks, but very few programs can deconvolute multi-peaks in a complex region. The deconvolution of multi-peaks requires special peak-fitting functions, such as left and right-skew distributions. In the this study, 843.76 keV (27Mg) peak area from the complex region (840 keV-850 keV) determined and compared using four different peak-fitting programs, namely, GammaVision, Genie2000, HyperLab, and HyperGam. The 843.76 keV peak interfered with 841.63 keV (152mEu) and 846.81 keV (56Mn). The total Mg concentration was determined through k0-instrumental neutron activation analysis by applying the isotopic interference correction factor 27Al(n,p)27Mg through the simultaneous determination of Al concentration. HyperLab and HyperGam peak-fitting programs reported consistent peak areas, and resultant concentrations agreed with the certified values of matrix-certified reference materials.

Galloping analysis of stranded electricity conductors in skew winds

  • Macdonald, J.H.G.;Griffiths, P.J.;Curry, B.P.
    • Wind and Structures
    • /
    • v.11 no.4
    • /
    • pp.303-321
    • /
    • 2008
  • When first commissioned, the 1.6 km span 275kV Severn Crossing Conductor experienced large amplitude vibrations in certain wind conditions, but without ice or rain, leading to flashover between the conductor phases. Wind tunnel tests undertaken at the time identified a major factor was the lift generated in the critical Reynolds number range in skew winds. Despite this insight, and although a practical solution was found by wrapping the cable to change the aerodynamic profile, there remained some uncertainty as to the detailed excitation mechanism. Recent work to address the problem of dry inclined cable galloping on cable-stayed bridges has led to a generalised quasi-steady galloping formulation, including effects of the 3D geometry and changes in the static force coefficients in the critical Reynolds number range. This generalised formulation has been applied to the case of the Severn Crossing Conductor, using data of the static drag and lift coefficients on a section of the stranded cable, from the original wind tunnel tests. Time history analysis has then been used to calculate the amplitudes of steady state vibrations for comparison with the full scale observations. Good agreement has been obtained between the analysis and the site observations, giving increased confidence in the applicability of the generalised galloping formulation and providing insight into the mechanism of galloping of yawed and stranded cables. Application to other cable geometries is also discussed.

Numerical analysis of thermal post-buckling strength of laminated skew sandwich composite shell panel structure including stretching effect

  • Katariya, Pankaj V.;Panda, Subrata Kumar
    • Steel and Composite Structures
    • /
    • v.34 no.2
    • /
    • pp.279-288
    • /
    • 2020
  • The computational post-buckling strength of the tilted sandwich composite shell structure is evaluated in this article. The computational responses are obtained using a mathematical model derived using the higher-order type of polynomial kinematic in association with the through-thickness stretching effect. Also, the sandwich deformation behaviour of the flexible soft-core sandwich structural model is expressed mathematically with the help of a generic nonlinear strain theory i.e. Green-Lagrange type strain-displacement relations. Subsequently, the model includes all of the nonlinear strain terms to account the actual deformation and discretized via displacement type of finite element. Further, the computer code is prepared (MATLAB environment) using the derived higher-order formulation in association with the direct iterative technique for the computation of temperature carrying capacity of the soft-core sandwich within the post-buckled regime. Further, the nonlinear finite element model has been tested to show its accuracy by solving a few numerical experimentations as same as the published example including the consistency behaviour. Lastly, the derived model is utilized to find the temperature load-carrying capacity under the influences of variable factors affecting the soft-core type sandwich structural design in the small (finite) strain and large deformation regime including the effect of tilt angle.

Adaptive Design Techniques for High-speed Toggle 2.0 NAND Flash Interface Considering Dynamic Internal Voltage Fluctuations (고속 Toggle 2.0 낸드 플래시 인터페이스에서 동적 전압 변동성을 고려한 설계 방법)

  • Yi, Hyun Ju;Han, Tae Hee
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.251-258
    • /
    • 2012
  • Recently, NAND Flash memory structure is evolving from SDR (Single Data Rate) to high speed DDR(Double Data Rate) to fulfill the high performance requirement of SSD and SSS. Accordingly, the proper ways of transferring data that latches valid data stably and minimizing data skew between pins by using PHY(Physical layer) circuit techniques have became new issues. Also, rapid growth of speed in NAND flash increases the operating frequency and power consumption of NAND flash controller. Internal voltage variation margin of NAND flash controller will be narrowed through the smaller geometry and lower internal operating voltage below 1.5V. Therefore, the increase of power budge deviation limits the normal operation range of internal circuit. Affection of OCV(On Chip Variation) deteriorates the voltage variation problem and thus causes internal logic errors. In this case, it is too hard to debug, because it is not functional faults. In this paper, we propose new architecture that maintains the valid timing window in cost effective way under sudden power fluctuation cases. Simulation results show that the proposed technique minimizes the data skew by 379% with reduced area by 20% compared to using PHY circuits.