• 제목/요약/키워드: Unmanned Military Robot

검색결과 41건 처리시간 0.031초

미래전투에 대비한 로봇 요구분석과 개발방향에 대한 연구 (A Study on the Direction of Development and Need Analysis on Robot Providing for Future Combat)

  • 권오상
    • 한국군사과학기술학회지
    • /
    • 제8권2호
    • /
    • pp.5-13
    • /
    • 2005
  • The use of robot is no longer limited in the industrial scene, and becoming expanded toward many aspects of human life. Especially, military robot closely concerned with our lives seems to advance more and more in the future. As a need analysis for developing military robot, this project conducted a poll about Unmanned Reconnaissance Robot, and on the basis of the result, I suggested 3 directions of developing UGV(Unmanned Ground Vehicle) suitable to strategic environment of Korea.

소형 무인 로봇의 소음 측정법 개발 및 측정 장소에 따른 상관성 분석 (Noise Measurement Method Development and Correlation Analysis According to Measurement Location of Small Unmanned Robot)

  • 옥진규;박은주;박민수;이명천
    • 한국군사과학기술학회지
    • /
    • 제20권5호
    • /
    • pp.633-638
    • /
    • 2017
  • The small unmanned robot developed in this paper can perform tasks such as surveillance and reconnaissance in the battle field. The noise generated during the operation of the robot may expose the operation area. Therefore, in this study, we developed a method to quantitatively measure the noise of the developed small unmanned ground robot. The criteria for noise measurement in indoor and outdoor are presented. It was used for statistical verification method to verify the reliability of the developed noise measurement method. The noise was measured at different places, and the correlation was analyzed. Thus, we proposed a method to predict the noise level in the operation area where the robot is operated by the noise test data measured during the development process.

확장된 페트리네트를 이용한 차량형 군사로봇의 운용자 성능 및 통신장애 영향분석 (Analysis of the Human Performance and Communication Effects on the Operator Tasks of Military Robot Vehicles by Using Extended Petri Nets)

  • 최상영;양지현
    • 한국CDE학회논문집
    • /
    • 제22권2호
    • /
    • pp.162-171
    • /
    • 2017
  • Unmanned military vehicles (UMVs) are most commonly characterized as dealing with dull, dirty, and dangerous tasks with automation. Although most of the UMVs are designed to a high degree of autonomy, the human operator will still intervene in the robot's operation, and teleoperate them to achieve his or her mission. Thus, operator capacity, together with robot autonomy and user interface, is one of the most important design factors in the research and development of the UMVs. Further, communication may affect the operator task performance. In this paper, we analyze the operator performance and the communication effects on the operator performance by using the extended Petri nets, called OTSim nets. The OTSim nets was designed by the authors, being extended using pure Petri nets.

보완 골격 알고리듬을 이용한 구난로봇의 자체 충돌감지/회피 (Self-Collision Detection/Avoidance for a Rescue Robot by Modified Skeleton Algorithm)

  • 이원석;홍성일;박규현;강윤식
    • 한국군사과학기술학회지
    • /
    • 제18권4호
    • /
    • pp.451-458
    • /
    • 2015
  • This paper handles self-collision avoidance for a rescue robot with redundant manipulators. In order to detect all available self-collisions in advance, minimum distances between arbitrary robot parts should be monitored in real-time. For the minimum distance estimation, we suggest a modified method from a previous skeleton algorithm which has less computation burden and realize collision avoidance based on a potential function using the proposed algorithm. The resultant command by collision avoidance should not disturb a given primary task, so null-space of joint solution from a CLIK is utilized for collision avoidance by a gradient projection method.

무인 국방 로봇의 효과적인 다물체 동역학 해석을 위한 부분시스템 합성방법 기반 DAE 해석 기법 비교 연구 (Comparative Study on DAE Solution Methods for Effective Multi-Body Dynamics Analysis of Unmanned Military Robot Based on Subsystem Synthesis Method)

  • 김명호;김성수;윤홍선
    • 대한기계학회논문집A
    • /
    • 제37권9호
    • /
    • pp.1069-1075
    • /
    • 2013
  • 무인 국방 로봇의 실시간 해석을 위해서는 효과적인 해석기법이 필수적인 요소이다. 이러한 효과적인 해석을 위하여 부분시스템 합성방법이 개발되었다. 부분시스템 합성방법은 기준 물체의 운동방정식과 각 부분시스템들의 운동방정식을 독립적으로 계산함으로써 계산량의 이득을 볼 수 있다. 운동방정식은 미분방정식과 대수방정식이 혼합된 미분대수방정식으로 표현된다. 이러한 미분대수방정식의 정확하고 효과적인 해석을 위해서 직접 적분방법, 구속조건식 안정화기법, 일반 좌표 분할기법 등이 개발되었다. 본 논문에서는 무인 국방 로봇의 효과적인 해석을 위하여 부분시스템 합성방법을 적용하고 위에서 기술한 세 가지의 미분대수방정식 해석기법을 비교하는 연구를 수행하였다.

무인로봇 정밀위치추정을 위한 전술통신 및 영상 기반의 통합항법 성능 분석 (The Performance Analysis of Integrated Navigation System Based on the Tactical Communication and VISION for the Accurate Localization of Unmanned Robot)

  • 최지훈;박용운;송재복;권인소
    • 한국군사과학기술학회지
    • /
    • 제14권2호
    • /
    • pp.271-280
    • /
    • 2011
  • This paper presents a navigation system based on the tactical communication and vision system in outdoor environments which is applied to unmanned robot for perimeter surveillance operations. GPS errors of robot are compensated by the reference station of C2(command and control) vehicle and WiBro(Wireless Broadband) is used for the communication between two systems. In the outdoor environments, GPS signals can be easily blocked due to trees and buildings. In this environments, however, vision system is very efficient because there are many features. With the feature MAP around the operation environments, the robot can estimate the position by the image matching and pose estimation. In the navigation system, thus, operation modes is switched by navigation manager according to some environment conditions. The experimental results show that the unmanned robot can estimate the position very accurately in outdoor environment.

군사로봇의 감시제어에서 운용자 역량 평가 방법에 관한 연구 (Operator Capacity Assessment Method for the Supervisory Control of Unmanned Military Vehicle)

  • 최상영;양지현
    • 로봇학회논문지
    • /
    • 제12권1호
    • /
    • pp.94-106
    • /
    • 2017
  • Unmanned military vehicles (UMVs) will be increasingly applied to the various military operations. These UMVs are most commonly characterized as dealing with "4D" task - dull, dirty, dangerous and difficult with automations. Although most of the UMVs are designed to a high degree of autonomy, the human operator will still intervene in the robots operation, and tele-operate them to achieve his or her mission. Thus, operator capacity, along with robot autonomy and user interface, is one of the important design factors in the research and development of the UMVs. In this paper, we propose the method to assess the operator capacity of the UMVs. The method is comprised of the 6 steps (problem, assumption, goal function identification, operator task analysis, task modeling & simulation, results and assessment), and herein colored Petri-nets are used for the modeling and simulation. Further, an illustrative example is described at the end of this paper.

단위임무 기반 로봇의 임무 계획 및 자동화 임무 관리 방법론 (Unit Mission Based Mission Planning and Automatic Mission Management for Robots)

  • 이호주;박원익;김도종
    • 한국군사과학기술학회지
    • /
    • 제17권1호
    • /
    • pp.1-7
    • /
    • 2014
  • In this paper, it is suggested a method of mission planning and management for robots based on the unit mission. In order to make robots execute given missions continuously as time goes by, a new concept for planning the mission which is composed of one or more unit missions and an automatic mission management scheme are developed. For managing robot's missions in real time, six management methods are devised as well in order to cope with the mismatches, which occur frequently during the mission execution, as to the initial plan. Without the operator's involvement, any mismatch can be adjusted automatically by applying one of the mission management methods. The suggested concept of mission planning and mission management methods based on the unit mission are partially realized in the Dog-Horse robot system and it is checked that it can be a viable one for developing effective robot operation systems.

견마로봇의 전력제어 및 최적 운용에 대한 연구 (Study on Power Control and Optimal Management for Dog-Horse Robot)

  • 강태하;허진욱;김준;강신천
    • 한국군사과학기술학회지
    • /
    • 제13권3호
    • /
    • pp.343-348
    • /
    • 2010
  • Recently, unmanned electric vehicles are increasingly interested among all of the world since they can provide low exhaust gas, high efficiency and high mobility. To exploit their silent maneuver and high mobility, unmanned electric vehicles have been developed since early 1980's for military. However, it is not easy to design and control a power system satisfying operating duration and mobility performance requirements based on various mission profiles for military use under the conditions of limited space and weight. Moreover it is also necessary to prevent over-charge, over-discharge and voltage unbalance between cells of battery to secure high voltage battery which is serially connected with muti-cells. In this paper, we presents power control and optimal management method for the dog-horse robot which adopts a electric power system and suggests a guide-line to manage and control to secure high voltage battery.

무인자율차량을 위한 경로계획 알고리즘 및 시뮬레이터 개발 (Developments of a Path Planning Algorithm and Simulator for Unmanned Ground Vehicle)

  • 김상겸;김성균;이용우
    • 한국자동차공학회논문집
    • /
    • 제15권3호
    • /
    • pp.1-9
    • /
    • 2007
  • A major concern for Autonomous Military Robot in the rough terrain is the problem of moving robot from an initial configuration to goal configuration. In this paper, We generate a local path to looking for the best route to move an goal configuration while avoiding known obstacle from world model, not violating the mobility constraints of robot. Trough a Simulator for Unmanned Autonomous Vehicle, We can simulate a traversability of unmanned autonomous vehicle based on steering, acceleration, braking command obtained from local path planning.