• Title/Summary/Keyword: Uncertainty quantification

Search Result 167, Processing Time 0.078 seconds

Uncertainty quantification and propagation with probability boxes

  • Duran-Vinuesa, L.;Cuervo, D.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2523-2533
    • /
    • 2021
  • In the last decade, the best estimate plus uncertainty methodologies in nuclear technology and nuclear power plant design have become a trending topic in the nuclear field. Since BEPU was allowed for licensing purposes by the most important regulator bodies, different uncertainty assessment methods have become popular, overall non-parametric methods. While non-parametric tolerance regions can be well stated and used in uncertainty quantification for licensing purposes, the propagation of the uncertainty through different codes (multi-scale, multiphysics) in cascade needs a better depiction of uncertainty than the one provided by the tolerance regions or a probability distribution. An alternative method based on the parametric or distributional probability boxes is used to perform uncertainty quantification and propagation regarding statistic uncertainty from one code to another. This method is sample-size independent and allows well-defined tolerance intervals for uncertainty quantification, manageable for uncertainty propagation. This work characterizes the distributional p-boxes behavior on uncertainty quantification and uncertainty propagation through nested random sampling.

A methodology for uncertainty quantification and sensitivity analysis for responses subject to Monte Carlo uncertainty with application to fuel plate characteristics in the ATRC

  • Price, Dean;Maile, Andrew;Peterson-Droogh, Joshua;Blight, Derreck
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.790-802
    • /
    • 2022
  • Large-scale reactor simulation often requires the use of Monte Carlo calculation techniques to estimate important reactor parameters. One drawback of these Monte Carlo calculation techniques is they inevitably result in some uncertainty in calculated quantities. The present study includes parametric uncertainty quantification (UQ) and sensitivity analysis (SA) on the Advanced Test Reactor Critical (ATRC) facility housed at Idaho National Laboratory (INL) and addresses some complications due to Monte Carlo uncertainty when performing these analyses. This approach for UQ/SA includes consideration of Monte Carlo code uncertainty in computed sensitivities, consideration of uncertainty from directly measured parameters and a comparison of results obtained from brute-force Monte Carlo UQ versus UQ obtained from a surrogate model. These methodologies are applied to the uncertainty and sensitivity of keff for two sets of uncertain parameters involving fuel plate geometry and fuel plate composition. Results indicate that the less computationally-expensive method for uncertainty quantification involving a linear surrogate model provides accurate estimations for keff uncertainty and the Monte Carlo uncertainty in calculated keff values can have a large effect on computed linear model parameters for parameters with low influence on keff.

Uncertainty quantification of once-through steam generator for nuclear steam supply system using latin hypercube sampling method

  • Lekang Chen ;Chuqi Chen ;Linna Wang ;Wenjie Zeng ;Zhifeng Li
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2395-2406
    • /
    • 2023
  • To study the influence of parameter uncertainty in small pressurized water reactor (SPWR) once-through steam generator (OTSG), the nonlinear mathematical model of the SPWR is firstly established. Including the reactor core model, the OTSG model and the pressurizer model. Secondly, a control strategy that both the reactor core coolant average temperature and the secondary-side outlet pressure of the OTSG are constant is adopted. Then, the uncertainty quantification method is established based on Latin hypercube sampling and statistical method. On this basis, the quantitative platform for parameter uncertainty of the OTSG is developed. Finally, taking the uncertainty in primary-side flowrate of the OTSG as an example, the platform application work is carried out under the variable load in SPWR and step disturbance of secondary-side flowrate of the OTSG. The results show that the maximum uncertainty in the critical output parameters is acceptable for SPWR.

Uncertainty Quantification of Welding Residual Stress Analysis based on Domestic Organizations Round-Robin Evaluation (라운드로빈 평가 결과에 기반한 국내 기관의 용접잔류응력 해석 분포의 불확실성 평가)

  • Sung-Kyun Jung;Jun-Young Jeon;Chan-kyu Kim;Chang-Sik Oh;Sung-Sik Kang;Chang-Young Oh
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.2
    • /
    • pp.130-139
    • /
    • 2023
  • This paper examines the quantification of uncertainty for welding residual stresses in dissimilar metal welds used in nuclear power plants. A mock-up of a dissimilar metal weld pipe, consisting of carbon and stainless steel pipes, was fabricated to measure the residual stress. A Round-Robin analysis was conducted by Korean institutions to assess the welding residual stress. The analysis was carried out in the second order, and the data obtained by each institution was evaluated based on the information provided. Using the Round-Robin results, the distribution of uncertainty in welding residual stresses among Korean institutions was evaluated. The quantification of uncertainty for Korean institutions was found to have a wider range compared to the distribution of welding residual stresses observed in overseas institutions. This study is considered useful in the establishment of comprehensive strategies for evaluating welding residual stress analysis methods used by domestic institutions.

Uncertainty quantification in decay heat calculation of spent nuclear fuel by STREAM/RAST-K

  • Jang, Jaerim;Kong, Chidong;Ebiwonjumi, Bamidele;Cherezov, Alexey;Jo, Yunki;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2803-2815
    • /
    • 2021
  • This paper addresses the uncertainty quantification and sensitivity analysis of a depleted light-water fuel assembly of the Turkey Point-3 benchmark. The uncertainty of the fuel assembly decay heat and isotopic densities is quantified with respect to three different groups of diverse parameters: nuclear data, assembly design, and reactor core operation. The uncertainty propagation is conducted using a two-step analysis code system comprising the lattice code STREAM, nodal code RAST-K, and spent nuclear fuel module SNF through the random sampling of microscopic cross-sections, fuel rod sizes, number densities, reactor core total power, and temperature distributions. Overall, the statistical analysis of the calculated samples demonstrates that the decay heat uncertainty decreases with the cooling time. The nuclear data and assembly design parameters are proven to be the largest contributors to the decay heat uncertainty, whereas the reactor core power and inlet coolant temperature have a minor effect. The majority of the decay heat uncertainties are delivered by a small number of isotopes such as 241Am, 137Ba, 244Cm, 238Pu, and 90Y.

A Study on Uncertainty Quantification and Performance Confidence Interval Estimation for Application to Digital Twin of Oscillating Water Column Type Wave Power Generator System (진동수주형 파력발전 시스템의 디지털 트윈 적용을 위한 불확실성 정량화 및 성능 신뢰구간 추정 연구)

  • Tae-Kyun Kim;Su-Gil Cho;Jae-Won Oh;Tae-Hee Lee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.3
    • /
    • pp.401-409
    • /
    • 2023
  • Oscillating water column (OWC) type wave power generator system is a power generation system that uses wave energy, a sustainable and renewable energy source. Irregular cycles and wave heights act as factors that make it difficult to secure generation efficiency of the wave power generator system. Recently, research for improving power generation efficiency is being conducted by applying digital twin technology to OWC type wave energy converter system. However, digital twin using sensor data can predict erroneous performance due to uncertainty in the sensor data. Therefore, this study proposes an uncertainty analysis method for sensor data which is used in digital twin to secure the reliability of digital twin prediction results. Uncertainty quantification considering sensor data characteristics and future uncertainty information according to uncertainty propagation were derived mathematically, and confidence interval estimation was performed based on the proposed method.

Derivation of uncertainty importance measure and its application

  • Park, Chang-K.
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1990.04a
    • /
    • pp.272-288
    • /
    • 1990
  • The uncertainty quantification process in probabilistic Risk Assessment usually involves a specification of the uncertainty in the input data and the propagation of this uncertainty to the final risk results. The distributional sensitivity analysis is to study the impact of the various assumptions made during the quantification of input parameter uncertainties on the final output uncertainty. The uncertainty importance of input parameters, in this case, should reflect the degree of changes in the whole output distribution and not just in a point estimate value. A measure of the uncertainty importance is proposed in the present paper. The measure is called the distributional sensitivity measure(DSM) and explicitly derived from the definition of the Kullback's discrimination information. The DSM is applied to three typical discrimination information. The DSM is applied to three typical cases of input distributional changes: 1) Uncertainty is completely eliminated, 2) Uncertainty range is increased by a factor of 10, and 3) Type of distribution is changed. For all three cases of application, the DSM-based importance ranking agrees very well with the observed changes of output distribution while other statistical parameters are shown to be insensitive.

  • PDF

ANALYSIS OF UNCERTAINTY QUANTIFICATION METHOD BY COMPARING MONTE-CARLO METHOD AND WILKS' FORMULA

  • Lee, Seung Wook;Chung, Bub Dong;Bang, Young-Seok;Bae, Sung Won
    • Nuclear Engineering and Technology
    • /
    • v.46 no.4
    • /
    • pp.481-488
    • /
    • 2014
  • An analysis of the uncertainty quantification related to LBLOCA using the Monte-Carlo calculation has been performed and compared with the tolerance level determined by the Wilks' formula. The uncertainty range and distribution of each input parameter associated with the LOCA phenomena were determined based on previous PIRT results and documentation during the BEMUSE project. Calulations were conducted on 3,500 cases within a 2-week CPU time on a 14-PC cluster system. The Monte-Carlo exercise shows that the 95% upper limit PCT value can be obtained well, with a 95% confidence level using the Wilks' formula, although we have to endure a 5% risk of PCT under-prediction. The results also show that the statistical fluctuation of the limit value using Wilks' first-order is as large as the uncertainty value itself. It is therefore desirable to increase the order of the Wilks' formula to be higher than the second-order to estimate the reliable safety margin of the design features. It is also shown that, with its ever increasing computational capability, the Monte-Carlo method is accessible for a nuclear power plant safety analysis within a realistic time frame.

Uncertainty quantification of the power control system of a small PWR with coolant temperature perturbation

  • Li, Xiaoyu;Li, Chuhao;Hu, Yang;Yu, Yongqi;Zeng, Wenjie;Wu, Haibiao
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2048-2054
    • /
    • 2022
  • The coolant temperature feedback coefficient is an important parameter of reactor core power control system. To study the coolant temperature feedback coefficient influence on the core power control system of small PWR, the core power control system is built with the nonlinear model and fuzzy control theory. Then, the uncertainty quantification method of reactor core parameters is established based on the Latin hypercube sampling method and the Bootstrap method. Finally, under the conditions of reactivity step perturbation and coolant inlet temperature step perturbation, uncertainty analysis for two cases is carried out. The result shows that with fuzzy controller and fuzzy PID controller, the uncertainty of the coolant temperature feedback coefficient affects the core power control system, and the maximum uncertainties of core relative power, coolant temperature deviation, fuel temperature deviation and total reactivity are acceptable.