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a b s t r a c t

In the last decade, the best estimate plus uncertainty methodologies in nuclear technology and nuclear
power plant design have become a trending topic in the nuclear field. Since BEPU was allowed for
licensing purposes by the most important regulator bodies, different uncertainty assessment methods
have become popular, overall non-parametric methods. While non-parametric tolerance regions can be
well stated and used in uncertainty quantification for licensing purposes, the propagation of the un-
certainty through different codes (multi-scale, multiphysics) in cascade needs a better depiction of un-
certainty than the one provided by the tolerance regions or a probability distribution. An alternative
method based on the parametric or distributional probability boxes is used to perform uncertainty
quantification and propagation regarding statistic uncertainty from one code to another. This method is
sample-size independent and allows well-defined tolerance intervals for uncertainty quantification,
manageable for uncertainty propagation. This work characterizes the distributional p-boxes behavior on
uncertainty quantification and uncertainty propagation through nested random sampling.
© 2021 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The first formulation of the 10-CFR-50 of the United States Nu-
clear Regulatory Commission (USNRC) in 1970 established general
design criteria to assist in the preparation of the Nuclear Power
Plant (NPP) licensing applications [1]. Deterministic Safety Analysis
(DSA) mission is to demonstrate the NPP design compliance with
that rules and was tackled from a conservative perspective in Ap-
pendix K to 10-CFR-50.46 applied to the Emergency Core Cooling
System (ECCS) design, using conservative codes and input data. In
the 80 s decade, with undergoing research on phenomena
modeling as well as a better understanding of the underlying
physics together with the development of the computational ca-
pabilities, the Best Estimate (BE) computer codes use arouse. BE
codes can demonstrate safety margins compliance combined with
conservative or realistic input data and boundary conditions [2].

During the 80s, the USNRC researched the development of a
methodology to use realistic and physically-based analysis
methods. BE calculations were first mentioned with regulatory
purposes in 1989, accompanied by a complementary uncertainty
ran-Vinuesa), d.cuervo@upm.

by Elsevier Korea LLC. This is an
analysis in the Regulatory Guide (RG) 1.157 e Best-Estimate Calcu-
lations of ECCS Performance [3]. The USNRC Code Scaling Applica-
bility and Uncertainty (CSAU) methodology [4] was published the
same year. Best Estimate Plus Uncertainty (BEPU) concept was born
and developed in the 90s, but practical licensing applications
started in the 2000s. A comprehensive historical revision of the
development and advances in BEPUmethodologies can be found in
Ref. [5] as well as the Atucha-II NPP BEPU approach in Chapter 15 of
the Final Safety Analysis Report (FSAR) [6]. The BEPU approach has
found its application to the DSA with licensing purposes not only
endorsed by Appendix K to10-CFR-50.46 and RG 1.157 for BE Loss of
Coolant Accident (LOCA) analysis. RG 1.203e Transient and Accident
Analysis Methods published in 2005 that allows BE based evaluation
models for a subset of transient events described in FSAR Chapter
15 and RG 1.70 e Standard Format and Content of Safety Analysis
Reports for Nuclear Power Plants [7]. BE codes can be used if biases
are accounted for, and some of them may not require a complete
uncertainty analysis, “However, in most cases, the Standard Review
Plan (SRP) guidance is to use ‘suitably conservative’ input parameters”
[8].

Though BEPU is limited to the analysis of accidents, future
research lines on BEPU face the FSAR adaptation to apply BEPU
methods to each step of FSAR. Thus, creating an evolved BEPU-FSAR
defining a proposal for improving nuclear reactors safety con-
necting the radiation protection As Low As Reasonably Achievable
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(ALARA) criterion for radiation exposure, Extended Safety Margins
(ESM), and Independent Assessment (IA) towards new safety-
barriers [9,10].

A photograph of uncertainty methodologies used worldwide
can be found in Ref. [11,12] that can be classified according to their
nature: deterministic or stochastic, with the latter being the most
popular and widely used by the most relevant companies and
regulator-bodies [13], and the one treated in this work. Before the
uncertainty analysis, a Phenomena Identification and Ranking
Table (PIRT) is deployed to identify the crucial parameters involved
in the safety analysis and in a second step, for the selected phe-
nomenamodeling inputs and parameters, the State of Knowledge is
to be characterized, based on existing literature or experimental
data, for instance, utilizing statistical techniques like Bayesian In-
verse Uncertainty Quantification (IUQ) [14].

These uncertainties are propagated through the code by any
random sampling technique and large number of code-runs
depending on the methodology. This process is called stochastic
uncertainty propagation. The uncertainty analysis proceeds with
the Uncertainty Quantification (UQ) method for one variable or a
group of them, and the subsequent sensitivity analysis to investi-
gate, for instance, the main contributor to the selected output
uncertainty.

On the one hand, UQ methods can be based on non-parametric
methods: Wilks’ theory of Order Statistics [15,16] and Hutson
fractional statistics [17] among other examples [18,19] that are
compared in the work of Saez-Villanueva et al. [20]. These methods
share the needless to assume the output variable obeys a concrete
probability distribution. On the other hand, Dempster-Shafer
structures, Theory of Evidence, and probability boxes (p-boxes)
[21] suggest a mean to perform UQ based on distributional or
parametric p-boxes construction.

For stochastic UQ, Wilks' formula is the trend because of its
simplicity and the reduced sample sizes needed. However, reduced
sample sizes may affect the quality of the sensitivity analysis.
Higher orders of Wilks' formula that impose high fixed sample-
sizes can guarantee the sensitivity coefficients convergence and a
(95,95) tolerance interval. The fixed sample sizes' main drawback is
that the size must increase for higher orders and become prohibi-
tive for some calculations (multiphysics coupling, core burn-up
simulations, and transients). It would be desirable to obtain (95/
95) tolerance regions for any sample size that guarantees other
statistics or the sensitivity analysis convergence. In this sense,
Wilks’ formula may result in a rigid one.

The illustrated method allows obtaining well-defined and con-
servative statistic regions for any sample-size in a flexible manner,
showing a comparison against the non-parametric Wilks' centered
formula [22] for a core thermal-hydraulics study case taken from
the Uncertainty in Analysis in Modelling Benchmark [23]. Com-
parisons against other UQ methods can be found in recent work
[43]. The benchmark aims to create a state-of-the art report on the
current status and needs of uncertainty analysis, creating a road-
map for the development and validation of the methods required
for uncertainty analysis. The benchmark's second phase (core
phase) consists of uncertainty propagation on standalone physics
simulations: bundle thermal-hydraulics among them. The selected
case is a numerical exercise based on the Peach Bottom II BWR fuel
assembly, corresponding to the Exercise III-1a, through which, core
boundary conditions and modelling parameters uncertainties are
propagated. In the present work, the maximum outer clad tem-
perature of the fuel assembly is regarded to make a step-by-step
depiction of the UQ method.

The benchmark in-depth analysis and results will be treated
separately in future works that will address further details, appli-
cations and analysis of the results, comparing against available
2524
experimental data. Subsequently, the present work is devoted to
establishing the basis of an uncertainty quantification method in
the context of nuclear engineering safety analysis and BEPU
methodologies.

This work treats the method's underlying theory and conceptual
interpretation and performs a comparative assessment between
the proposed probability-boxes technique and Wilks' formula in
terms of robustness and conservatism. In Section 2, the statistical
background and definitions are given together with the tolerance
interval formulation. Section 3 presents the theoretical formulation
of the distributional p-boxes method proposed, and Section 4
presents the analysis methods and results obtained. Finally, con-
clusions are derived from the analysis in Section 5.
2. A brief conceptual background on Figure of Merit and
tolerance regions

According to a general definition, a Figure of Merit (FOM) is the
quantity used to measure a system's performance, useful in
comparing the quality of things or methods. For UQ purposes, the
FOM can be defined as the Tolerance Region (TR) of the selected
output variable, namely the “Minimum Departure from Nucleate
Boiling Ratio” (MDNBR) - either “Minimum Departure from
Nucleate Boiling” or “Minimum Nucleate Boiling Ratio".

Let X be a continuous random variable and S to be a random
sample of X. A two-sided TR (Eqn. (1)) is an interval TRðSÞ ¼ ½L;U�
such that at least a portionb of X is contained in TRðSÞ (aka
coverture, or first-order probability) with at least g probability (aka
confidence level, or second-order likelihood) [24,25].

PSfPXfX2½L;U� g � b g � gzPSfXb3½L;U� g � g (1)

This definition of TR gives a range of values that the variable X
may take, accomplishing a well-defined statistic criterion ðb;gÞ. For
one-sided TRs, Eqn. (2) represents a well-defined condition to
achieve. Namely, a unilateral (95,95) TR, also known as “tolerance
limit”, is required by some regulatory bodies for the acceptance of
BEPU based safety analysis [26] and hence, its importance.

PSfPXfX�Ug�bg�gzPSfU�Xbg � g (2)

For two-sided TRs, there are infinite two-sided b regions drawn
into a Probability Density Function (PDF) that can be approached by
two-sided TRs in Eqn. (3). A more precise definition is that the
region of X to enclose is the centered b region. Eqn. (3) includes this
amendment for centered two-sided tolerance regions.

PS
n
L�Xð1�bÞ=2 ∩U�Xð1þbÞ=2

o
� g (3)

These definitions of TR are strongly connected to the conceptual
interpretation of the uncertainty sources. While coverage b is a
measure of the uncertainty caused by the inherent variability of the
variable X and the lack of knowledge on its determination, the
confidence level g is linked to the epistemic uncertainty or lack of
knowledge of X, including statistic uncertainty when X is calcu-
lated from random sampling techniques. In uncertainty propaga-
tion, this relationship can be misleading because the code's output
aleatory uncertainty embeds the inputs' variability and its
epistemic uncertainty (i.e., the measurement error) together.

The output epistemic uncertainty will only be caused by the
sample size's finitude, so-called statistic uncertainty [25]. Through
the propagation of uncertainties, epistemic uncertainties are
embedded in a cascade from one to another code.

Wilks' sample-sizes obtained for different orders in the work of
Hohn and Connolly [22], extended by the author, are shown in



Table 1
Sample sizes to build non-parametric TRs based on Wilks’ theory of order statistics.

Criterion One-sided Non-centered two-sided Centered two-sided

1st order 2nd order 3rd order 1st order 2nd order 3rd order 1st order 2nd order 3rd order

90/90 22 38 52 38 65 91 58 93 124
95/95 59 93 124 93 153 208 146 220 286
99/99 459 662 838 662 1001 1307 1057 1483 1851
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Table 1 for various Wilks' theory formulations (one-sided, non-
centered two-sided, and centered two-sided). In the next section,
the parametric method to calculate TRs according to Eqn. (3) is
detailed. Note that Wilks’ TRs only give bounding values, ½L;U�, for
the two-sided case.

Employing Wilks’ formula is impossible to separate epistemic
from aleatory uncertainty due to the limited information that the
TR gives in this sense, and difficulties are found to propagate the
output uncertainty through other codes. The main advantage of p-
boxes is that epistemic and aleatory uncertainty can be treated
separately. Indeed, distributional p-boxes offer more information
about the output uncertainty on the imprecise probabilities space,
for instance, its probability distribution. Thus, it is easier to prop-
agate this uncertainty to downward codes in the chain of uncer-
tainty propagation in multi-physics or multi-scale using classical
Monte-Carlo nested sampling or more advanced optimized tech-
niques [27].

3. A parametric UQ method based on probability boxes

The goal of the method is to obtain TR from the p-boxes. This
analysis method is based on the hypothesis that the chosen variable
belongs to a probability distribution. It is also essential to consider
the random origin of the sample: statistical inference applied to
uncertainty quantification must be performed only with a random
sampling method and take special considerations when stratified
Latin Hypercube Sampling (LHS) is used [28,29].

First-order probability could be calculated by integrating the
centered b portion of the Cumulative Density Function (CDF) if the
sample size would tend to the infinity. As sample-sizes are finite,
PDF's parameters are determined with a concrete certainty level or
confidence level, ð1 � aÞ ¼ g, regarding statistic uncertainty. The p-
box can be drawn by evaluating all possible combinations of Con-
fidence Interval (CI) limits on the CDF: themaximum andminimum
bounds enclosing the true CDF [30]. From the p-box, a TR can be
calculated as stated in Eqn. (3).

The method consists of four essential steps to obtain ðb; gÞ
parametric TR from p-boxes:

a. Select the best probabilistic model or Cumulative Density
Function (CDF) and theMaximum Likelihood Estimate (MLE) for
its parameters

b. Parameters' confidence intervals CI calculation
c. P-box construction technique from the CDF and parameters' CI
d. ðb; gÞ TR calculation
Table 2
Maximum LLF and c2-GOF test results for the three best models fitted.

Probabilistic Model L ðbqÞ c2-GOF test P-value (%)

Normal 212.5989 0 92.98
Nakagami 212.5961 0 92.86
Birnbaum-Saunders 212.5906 0 92.79
2.1. Parametric family selection based on statistical inference

The first step is to fit the best probabilistic model to the sample
employing the Likelihood Function (LF). Let X be a Simple Random
Variable and SðXÞ a Simple Random Sample of X so that SðXÞ ¼ fx1;
x2; …; xng. The function Lidefined for a probabilistic model, f *,
depending on the vector of parameters q ¼ fq1; q2;…; qpg in Eqn.
(4) means the probability of one element xi to be observed for a
2525
given q0. The probability of occurrence of the sample SðXÞ is given
by Eqn. (5), which is the definition of Likelihood Function, LðqÞ. For
numerical reasons, the Log-Likelihood Function, L ðqÞ, is defined in
Eqn. (6).

Liðq0; xiÞ¼ PðX¼ xijq¼ q0 Þ¼ f *X ðxi; q0Þ (4)

LðqÞ¼K
Ym
i¼1

Liðq; xiÞ (5)

L ðqÞ¼ ln½LðqÞ� ¼K 0Xm
i¼1

L iðq; xiÞ (6)

The L ðqÞmaximization problem is addressed for each model f *.

Eqn. (7) is solved and the maximum likelihood estimator (MLE), bq,
is obtained as the value that maximizes L ðqÞ. MLE is found for a
total amount of 8 models in this work. The model with the lower
Akaike Information Criterion (AIC) in Eq. (8) value will represent
the best the original sample distribution accounting a penalty for
the model's complexity by its number of parameters, k. It is
adequate a c2-Goodness-of-Fit (GOF) [31], Anderson-Darling GOF
[32], or Kolmogorov-Smirnov GOF [33] to support the results.

vL ðqÞ
vqi

¼0 /L ðbqÞ¼maxðL ðqÞÞ (7)

AIC¼2k� 2L ðbqÞ (8)

Let us take an example to illustrate the optimization process.
The selected variable is the maximum outer clad temperature in [K]
of the Peach Bottom II BWR fuel assembly, taken from the Uncer-
tainty in Analysis and Modelling Benchmark, Phase II, Exercise III-

1a [23]. L ðbqÞ is calculated for 8 models, and the three best fits
are shown in Table 2. The normal distribution fits the best the

sample with the highest L ðbqÞ value, endorsed by the c2-GOF test
that means the null hypothesis cannot be rejected with a p-value of
about 92.98%, far from the minimum 5% for a 95% confidence. Fig. 1
plots L ðqÞ for the Normal distribution parameters, ½m; s�, and the

maximum likelihood estimator, bq ¼ ½bm; bs� ¼ ½568:68; 0:19�.
2.2. Confidence intervals calculation

The second step is to describe the CI of the parameters that
define the probabilistic model regarding the estimator's statistic



Table 3
Confidence numerical estimation for some probability distribution.

Distribution Beta Nakagami BB-Saunders Rician

CCC (%) 97.15 100 99.34 99.43

Distribution Rayleigh Normal GE-Value Logistic
CCC (%) 96.12 98.83 99.95 98.60

Fig. 1. Normal log-likelihood function L ðqÞ and calculated MLE bq

Fig. 2. Representation of the LLR test for bm and estimator CI calculation.

Fig. 3. Probability box composition scheme.
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uncertainty. CIs can be obtained by different methods: the Log-
likelihood Ratio (LLR) test and the Wald test, amongst others [34].
Wald's method validity is limited to the condition that L ðqÞ can be
well approximated by a quadratic function, and a comparison
against LLR-test is conducted in the work of Pawitan [35]; thus, the
LLR test is chosen.

LLR test is based on the Profile Likelihood, RðqÞ: the normalized
likelihood function projection onto each parameter dimension [24],
see Eqn. (9). The statistic LLRi for composite testing hypotheses is
defined in Eqn. (10) and a test that rejects the null hypothesis that

qi ¼ bqi provides the CI at a significance level [36], where p is equal
to the number of free distribution parameters (degrees of freedom).
The CI for qi then verify the condition in Eqn. (11), as depicted in
Fig. 2.

RðqiÞ¼max
cN�i

24L
�
qi;
bq2;…; bqN�
LðbqÞ

35 (9)

LLRðqiÞ¼ � 2 ln½RðqiÞ� > c2ð1�a;pÞ (10)

RðqiÞ> exp

"
�
c2ð1�a;pÞ

2

#
(11)

Fig. 2 shows the projection of this normalized L ðqÞ onto the
mparameter dimension, cut by the LLR test condition that defines de
CI for the example in step 1. The significance level of the CI must be
addressed carefully to preserve rigor. Given a collection of m sets
fA1; A2;…; Amg and being 1� ai the probability associated with Ai,
the intersection likelihood for a joint significance level aJ ,
expressed as follows, 1� aJ ¼ Pð∩m

i¼1AiÞ; depends on the relation
between sets Ai. A conservative bound for the joint significance
level is provided by Bonferroni's inequality [37] in Eqn. (12) to
2526
comply with a joint criterion for multiple FOMs. For instance, two
simultaneous (95,95) TRs at a significance level ai

2 ¼ 0:025, throw a
joint confidence level 1� aJ ¼ 0:95.

P
�
∩m
i¼1Ai

�¼1� aJ � 1�
Xm
i¼1

PðAiÞ ¼ 1�
Xm
i¼1

ai (12)
2.3. P-box construction method

The next step involves the concept of p-boxes as established by
Ferson et al. [21]: p-boxes are probability regions confined by two

non-decreasing functions
h
F; F

i
. These functions depict a real and

imprecisely known probability distribution F and meet the
following properties:

FðxÞ⫅ ½0;1�; FðxÞ⫅ ½0;1�;c x2R (13)

FðxÞ> FðxÞ> FðxÞ (14)

FðxÞ¼1� PðX > xÞ; FðxÞ¼ PðX� xÞ (15)

For a Normal CDF depending on two parameters, four CDFs from
all combinations of CIs can be used to build a 95% confidence p-box



Fig. 4. Normalized (95,95) TRs for different distributions' approach to the real 95%
centered probability region.
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by the maximum and minimum value of the calculated CDFs (see
Fig. 3).

FðxiÞ ¼ maxðCDF1ðxiÞ;…;CDFmðxiÞ Þ (16)

FðxiÞ ¼ minðCDF1ðxiÞ;…;CDFmðxiÞ Þ (17)

2.4. Tolerance region calculation and uncertainty quantification

The last step is to calculate the uncertainty or TR by integrating

the p-box components
h
F; F

i
. The expression in Eqn. (18) is pro-

posed to generate centered TRs, according to Eqn. (3) for a criterion
ðb;gÞ.

DX¼ TR¼
�
Fð1�bÞ=2; Fð1þbÞ=2

�
(18)

3. Validation and performance analysis

The assessment and validation of the distributional p-boxes
method are presented in this section. Subsection 4.1 goes through
the p-box construction method, excluding the initial inference part.
Performance metrics of the method, including inference, are pre-
sented in subsection 4.2. The third part is focused on the sensitivity
of the p-boxes to fitting parameters and the validity of the method
hypothesis of inference. The last part of the analysis investigates the
propagation of uncertainty using p-boxes with a Monte-Carlo
based algorithm.

Robustness measures the statistical fluctuations that occur
when the same method is carried out several times with different
random samples of the same size for the same FOM. The variation
of the TR limits changes the coverage of the TR each time. A robust
method minimizes these statistical fluctuations and tends to offer
pretty similar results between realizations. The metrics used to
estimate the robustness and conservativeness of the methods are
defined in the following lines.

To measure the robustness, a mother sample of i ¼ 1; ::; Z ¼
100;000 elements has been generated from the simulation in
Section 3 to ensure the four statistical moments (mean, standard
deviation, skewness, and kurtosis) convergence under 1%. An
amount of j ¼ 1;…; M ¼ 15;000 data subsets are obtained by
subsampling N number of elements. N equals Wilks' centered for-
mula sample sizes (see Table 1) to compare against (95,95) TRs
from Wilks’ centered method for different orders. The coverture
statistics can be defined, starting with the coverage of each subset
M:

Cj ¼
1
Z

 XZ
i¼1

I
�
xi 2 TRj

	!
(19)



I½a� ¼ 1 if a ¼ true
I½a� ¼ 0 if a ¼ false

Then, the mean and standard deviation of the coverage can be
written as follows in Eqns. (20) and (21):

Cm ¼ 1
M

XM
j¼1

Cj (20)
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Cs¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
M � 1

XM
j¼1

�
Cj � Cm

�2vuut (21)

The coefficient of variation, CCV , measures the method's
robustness as the relative standard deviation of the covered portion
of the mother sample (Eqn. (22)).

CCV ¼ Cs
Cm

$100 (22)

Confidence is estimated by the coefficient of conservativeness,
CCC , defined for a reference region to be covered by the TR. In this
case, the centered 95% quantile of the mother sample: SVref ¼ ½P2:5;
P97:5�.

CCC ¼
1
M

0@XM
j¼1

I
h
SVref 3 TRj

i1A$100 (23)

The coefficient of conservativeness means the portion of the M
TRs calculated that cover the reference region. As Z and M tend to
infinity, the coefficient of conservativeness equals the method's
confidence because the reference region approaches the real
centered 95% probability of the selected random variable.
3.1. TRs construction method validation

A validation exercise requires to know the real probability re-
gions before the test. Subsequently, the probabilistic model is a
priori known. The TR construction method is validated by random
sampling for each of the known distributions against the known b

probability regions to be covered. Fig. 4 shows the centered 95%
probability regions [-1, 1], and the (95,95) TRs for different proba-
bility distributions and sample sizes. The confidence estimation for
each distribution is shown in Table 3.

The reader can observe two kinds of fluctuations: the first one is
the lower and upper limits' asymmetric behavior. The second one
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depends on the probability distribution itself. Though all the distri-
butionswere tested for all sample sizes, someof themproved a better
fitting. These distributions showminor fluctuations and reduced TRs
than thosewhich fit the worse (Subsection 4.3). Moreover, the p-box
algorithm may stick the limits to a particular value for those distri-
butionswith higher CI (extreme cases). This bias explains the straight
limits evolution for thewiderTRsgivenby theworstfits.However, the
best models show fewer fluctuations and narrower CIs, and the al-
gorithm performs verywell for non-extreme cases, the ones selected
to perform UQ. Besides, the treatment of the worst cases suggests an
improvement area for the algorithm's future development.

3.2. TR construction method performance and comparison against
Wilks method

Let us define the FOM as the maximum outer clad temperature
in [K] of the Peach Bottom II BWR fuel assembly, taken from the
Uncertainty in Analysis and Modelling Benchmark, Phase II, Exer-
cise III-1a [23]. Metrics defined in the introduction of this Section 4
are obtained for the p-box method and the centeredWilks' method
to compare both methods' behavior at different sample sizes (or
orders). Table 4 shows the metrics’ results.

The same trend can be observed for both methods in Fig. 5 (left)
for the mean coverage. Fig. 5 (center) shows similar robustness of
around 1%. Wilks’method robustness improves with the increasing
sample size while p-boxes robustness seems to remain constant.
Both methods show a constant confidence coefficient, higher for
the p-boxes method in Fig. 5 (right). This result shows the more
conservative character of the p-boxes method.

The maximum clad temperature uncertainty bands are plotted
in Fig. 6 as the TRwidth or DT. To reduce statistical noise, Fig. 6 plots
the Bootstrap mean estimate of the TR widths and the Bootstrap
estimate of the Standard Error of the Mean (SEM), bsB [38]. P-boxes
and Wilks’methods follow the same trend with the sample size: as
the coverage diminishes, the TR limits get tighter to give smaller
TRs and offer similar results (see Table 5).

The reader may realize that the provided uncertainty ranges are
narrower than 1 K for some cases. This is an uncertainty range
lower than the accuracy of the experimental measures fromwhich
the correlations are developed that can be justified because heat
transfer parameters uncertainties are not addressed in this nu-
merical exercise, where only boundary conditions, pressure losses
and mixing parameters’ uncertainties are concerned.

3.3. Tolerance regions sensitivities to p-box construction
parameters

This subsection goes through the TR sensitivity to the similarity
of the sample to the distributional model used to construct the TR.
A crucial hypothesis of the p-boxesmethod is that the sample obeys
a probabilistic model chosen by its best similarity. Despite this, the
model will not perfectly fit the sample. Other models can be added
to the fitting algorithm to cope with this fact, or at least, the
researcher must be aware of the effect of the disparity between the
sample and the probabilistic model on the TR width.
Table 4
Coverage statistics and metrics results (Sample Size, SS).

1st order/SS 146 2nd order/SS 220

Method p-box Wilks p-box Wilks

Cm 98.68 98.65 98.30 98.21
Cs 0.0072 0.0094 0.0074 0.008
CCV ð%Þ 0.7311 0.9517 0.7479 0.907
CCC ð%Þ 99.40 95.24 99.37 95.98
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Fig. 7 shows the TR's width sensitivity to parameters involved in
the fitting process: the maximum log-likelihood of the fit and the
p-value of the GOF tests that endorse the fitted distribution. Fig. 7
(a) shows the TR's width trend with the maximum log-likelihood
to measure the similarity between the observed sample and the
fitted model. The greater the similarity, the tighter the TR will be.
This fact suggests that worse models throw conservative TRs.
Models with a higher number of parameters deserve special
consideration giving wider TRs (i.e. Generalized Extreme Value
distribution [39] vs. Normal distribution).

The p-value of a given GOF test is used to fit a probabilistic
model to the sample. However, the only information that the p-
value gives is the significance level, which is not linked to the
distribution similarity to the sample (i.e., one could not select a
model based on p-value ranking), as suggested in Fig. 7(b).

The p-value is not correlated to the TR's width. A positive cor-
relation between sample-size and maximum log-likelihood values
is shown in Fig. 7(c). Hence, the trends observed in Fig. 6 are
justified by the greater degree of similarity reached for higher
sample sizes.
3.4. Uncertainty quantification at any sample-size

In the present subsection, one of the advantages of the non-
parametric method is tested: its capability to calculate a given
½b;g � TRs independently on the sample-size. The standard Normal
PDF is taken with a bcentered ¼ ½�1:96; 1:96� in a numeric exercise
to test this feature. TRs for sample sizes from 10 to 500 have been
obtained. Fig. 8 (a) shows the TRs limits for this numerical exercise,
and (b) the TRs calculated for the maximum outer clad temperature
of the study case illustrated.

Sample sizes in the exercise cover from 10 to 500. During the
algorithm performance for the smaller sample sizes, the code
throws the widest TRs and needs considerably more computational
effort. Moreover, the reader should realize that very low sample
sizes reduce the quality of the analysis. Several tens of code runs are
needed to avoid TRs that double the central region to be covered.
However, it seems the only sample size limit is the algorithm's
capability to apply statistical inference.

A last concern on the comparison against the Wilks' method is
that, though Wilks formula is sample size dependent, Fig. 5 shows
the Wilks' estimated confidence level value of 95% while P-boxes
confidence level is overestimated. Wilks’ sample size derivation
includes the imposition of 95% confidence level in the sample size
obtention, giving the exact 95% confidence level unlike the p-boxes
method, which imposes the 95% confidence level in the TR calcu-
lation, but offers overestimated confidence levels. In conclusion,
TRs calculated by Wilks formula properly preserve the TR statistic
design criterion ðb;gÞ thus establishing a reference to the com-
parison but finds a limitation on the sample size that can be miti-
gated by means of the p-boxes method that has demonstrated its
capability to equal Wilks formula TRs in despite of the confidence
level overestimation.
3rd order/SS 286 4th order/SS 345

p-box Wilks p-box Wilks

98.05 97.92 97.83 97.73
9 0.0070 0.0083 0.0069 0.0079
0 0.7130 0.8478 0.7006 0.8116

99.56 95.18 99.51 95.05



Fig. 5. Metrics comparison for Wilks centered formula and p-boxes method.

Fig. 6. Bootstrap estimates for maximum clad temperature uncertainty or 95/95 TR
widths.
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3.5. Stochastic uncertainty propagation with a basic nested
sampling algorithm

Another of the strengths of the parametric method is the pos-
sibility to preserve statistic uncertainty through uncertainty prop-
agation. When the input parameter comes from another
uncertainty propagation exercise, it is usual to find a probability
distribution with its parameters CIs (this is, a p-box definition). A
Monte-Carlo based nested sampling is used to sample p-boxes:
Table 5
Bootstrap two-sided TRs estimates.

Method Wilks P-boxes

1st order SS 146 [568.17, 569.16] [568.19, 569.16]
2nd order SS 220 [568.19, 569.13] [568.20, 569.14]
3rd order SS 286 [568.21, 569.12] [568.22, 569.13]
4th order SS 345 [568.22, 569.10] [568.22, 569.11]
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firstly, the distribution parameters are sampled assuming a uniform
distribution for each one, and then, the probability distribution
with these parameters is sampled. This method can be understood
as the code's output uncertainty surrogate that directly generates
outputs samples instead of a more complex surrogate for the whole
code: this method generates samples of the output variable in its
uncertainty range, preserving its probability distribution. Instead of
building a surrogate model for the code and make the input per-
turbations, the probability-box sampling algorithm can generate
more output samples than those originals from which the output
probability distribution was generated. In this case, the greater
sample size generated will not reduce the output aleatory uncer-
tainty, unlike the original model runs or the code's surrogate
output. Some p-boxes sampling methods based on MC and Poly-
nomial Chaos Expansion (PCE) are briefly described in Ref. [27,40].

In this section, a comparative exercise on reproducing samples
from p-boxes and samples from the original code results is per-
formed, comparing different sample types:

1. Sample size 10,000, from the original code-runs. (Case O).
2. Sample size 10,000, from a p-box built from 146 original ele-

ments. (Case A).
3. Sample size 10,000, from a p-box built from 220 original ele-

ments. (Case B).
4. Sample size 10,000, from a p-box built from 286 original ele-

ments. (Case C).
5. Sample size 10,000, from a p-box built from 345 original ele-

ments. (Case D).
6. Sample size 10,000, from a p-box built from 10,000 original

elements. (Case Z).

The mean and standard deviation residuals (Eqn. (24) and Eqn.
(25), accordingly) are plotted in Fig. 9 for cases O, A, and D. The
convergence is similar for the original model and the p-box model
nested sampling.

Rmi ¼100$
mi � mi�1

mi�1
½%� (24)

Rsi ¼100$
si � si�1

si�1
½%� (25)

A one-way ANOVA [41,42] has been carried out with 1000 re-
alizations for each sample type by resampling the 10,000 elements
original sample. The ANOVA tests the null hypothesis that the



Fig. 7. A sensitivity study on the TRs obtained by the p-boxes method.
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different sample types are drawn from populations with the same
mean against the alternative hypothesis that the population means
are different. Table 6 shows the ANOVA table. The analysis reveals
the variability comes from differences between data in each group
instead of differences between the groups’ mean and the null hy-
pothesis above is accepted with a p-value of 0.25. Subsequently,
Fig. 8. (95,95) Tolerance Regions for the normal case (a) and th
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one could claim that all the sample types come from a population
with the same mean at a significance level greater than 5%.

Differences between groups appear regarding the sparsity of the
population mean. A box-chart is plotted in Fig. 10 for the mean and
standard deviation of each sample type. The original sample shows
small statistic uncertainty uniquely caused by its finite sample size.
e maximum clad temperature of the benchmark case (b).



Fig. 9. The moving mean of the convergency rate for the mean and the standard deviation.

Table 6
ANOVA table.

Source Sum of squares Degrees of freedom Mean Squared Error F-statistic P-value

Groups 0.00168 5 0.00034 1.32 0.2543
Error 1.5332 5994 0.00026
Total 1.53488 5999

Fig. 10. Mean of each sample type box plot and Standard Error of the Mean.
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However, samples taken from p-boxes show a higher interquartile
range (cases A, B, C, and D). This variability mostly comes from the
reduced sample size from which the p-box was drawn despite the
equal sample size between groups, considering epistemic
uncertainty.

For the same sample size, a greater sparsity of the mean and
standard deviation in case Z suggests another uncertainty source:
the p-boxes calculation itself. While sample O is generated from
code outputs, Z is obtained from a p-box drawn from the elements
in O. Case Z presents a slightly higher interquartile range and SEM,
caused by the p-box sampling method itself (i.e., the hypothesis of
the uniform distribution of the mean and standard deviation) with
2531
a despicable effect in the practical sense. Subsequently, the p-box
introduces bias, characterized by the SEM. The bias order of
magnitude is ~10�4 for all cases because of the great sample size.
Between groups, the order of magnitude remains. Consequently, p-
boxes show a good performance on uncertainty propagation, pre-
serving the original sample's epistemic uncertainty.

4. Conclusions

An in-depth analysis of the distributional probability boxes (p-
boxes) has been carried out to demonstrate their applicability to
BEPU methodologies. For uncertainty quantification, a method to
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build tolerance regions (TR) from p-boxes is presented and
compared against theWilks’ formula theory TRs. Then, the p-boxes
method performance has been analyzed with the following results:

1. The TR construction method has demonstrated that valid TRs
can be obtained from distributional p-boxes preserving aleatory
and epistemic uncertainty separation (Fig. 4).

2. TRs obtained are like those of Wilks in terms of coverture or
first-order probability but show a more conservative character
in terms of confidence or second-order probability (Fig. 5). In
terms of coverture, the p-box method behaves like the Wilks
formula: decreasing similarly with the sample size (Fig. 6).

3. The TR construction method's most critical hypothesis is the
probabilistic model of the p-boxes in the fitting algorithm. Nu-
merical experiments have demonstrated its capability and
flexibility to perform UQ at practically any sample size (Fig. 8)
and that the worse models throw the more conservative results
(Fig. 7). Even accounting for the worst models, the TR con-
struction algorithm performs acceptably on uncertainty quan-
tification. Models depending on a higher number of parameters,
with the same maximum likelihood criterion, will give wider
TRs. The p-value of the GOF test should not be used to rank
models on the list.

A final statement on the p-boxes and its comparison against
Wilks uncertainty quantification method is the main advantage of
p-boxes are its capability to compute TRs independent on the
sample size but overestimating confidence level while Wilks for-
mula precisely characterizes the confidence level but only for
limited sample sizes.

For uncertainty propagation, uncertainty taken from upstream
codes may be in the form of a distributional p-box, given by a
probability distribution, its parameters, and their confidence in-
tervals. A basic nested-sampling algorithm analysis has demon-
strated its validity on uncertainty propagation with the following
remarks:

1. The p-box nesting-algorithm does not improve the statistical
moments' convergence (Fig. 8) and behaves like the original
code uncertainty.

2. The p-box description of the output uncertainty reproduces the
original code uncertainty. In this sense, p-boxes performs like a
surrogate model for the code to reproduce the output uncer-
tainty. This technique has been demonstrated (Fig. 10).

3. The p-box definition includes statistical uncertainty that will be
propagated in the form of the distribution parameters sparsity.
The analysis suggests that the nesting method introduces more
uncertainty with a despicable effect (Fig. 10). Moreover, the
sensitivity analysis shows that bad or inaccurate distribution fits
will propagate higher uncertainty, protecting against uncer-
tainty underestimation.
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