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a b s t r a c t

Large-scale reactor simulation often requires the use of Monte Carlo calculation techniques to estimate
important reactor parameters. One drawback of these Monte Carlo calculation techniques is they inev-
itably result in some uncertainty in calculated quantities. The present study includes parametric un-
certainty quantification (UQ) and sensitivity analysis (SA) on the Advanced Test Reactor Critical (ATRC)
facility housed at Idaho National Laboratory (INL) and addresses some complications due to Monte Carlo
uncertainty when performing these analyses. This approach for UQ/SA includes consideration of Monte
Carlo code uncertainty in computed sensitivities, consideration of uncertainty from directly measured
parameters and a comparison of results obtained from brute-force Monte Carlo UQ versus UQ obtained
from a surrogate model. These methodologies are applied to the uncertainty and sensitivity of keff for two
sets of uncertain parameters involving fuel plate geometry and fuel plate composition.
Results indicate that the less computationally-expensive method for uncertainty quantification involving
a linear surrogate model provides accurate estimations for keff uncertainty and the Monte Carlo uncer-
tainty in calculated keff values can have a large effect on computed linear model parameters for pa-
rameters with low influence on keff.
© 2021 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In practical engineering scenarios, particularly those involving
experimental implementation, it is important to have an in-depth
understanding of the behavior and consistency of a computa-
tional model under perturbations to model parameters that lie
within a realistic bound of tolerances. This allows engineers to gain
more insight into the validity of the model when comparing results
to experimental results. One way of gaining this understanding is
through uncertainty quantification (UQ) and sensitivity analysis
(SA). Uncertainty quantification can be broadly defined as the
“science of identifying, quantifying and reducing uncertainty
associated with models” Smith [1] and sensitivity analysis can be
described as the “study of how uncertainty in the output of a model
can be apportioned to different sources of uncertainty in model
input” Saltelli et al. [2]. Often, the definition of uncertainty analysis
can be said to end before taking action to reduce those
by Elsevier Korea LLC. This is an
uncertainties. Nevertheless, when combined, these two routes of
exploration offer a comprehensive understanding of the relation-
ship between model input and output as well as a confidence
bound on the results of the model.

Overall, sources of uncertainty can affect physical models at
every step in the calculation. A reasonable classification system for
uncertainty sources is presented in Radaideh and Kozlowski [3].
This paper describes parametric uncertainty as the result of “sto-
chastic or unknown” behavior in model parameters. A variety of
methods exist to propagate parametric uncertainty through a
physical model in order to characterize the behavior of an output
parameter. One popular method involves using Monte Carlo sam-
pling techniques [4]. performed a study to test various sampling
strategies in the context of Monte Carlo uncertainty analysis. The
model used for analysis had a civil engineering application
involving the calculation of heat and moisture transfer between
building components; it was found that the more sophisticated
sampling strategies increased the efficiency of Monte Carlo based
uncertainty analysis. In the field of nuclear engineering, techniques
such as “Fast Total Monte Carlo” or “Fast Generation Random
Sampled” have been developed to propagate uncertainties through
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Fig. 1. General radial layout ATRC core.
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Monte Carlo calculations with small additional compute time
Rochman et al. [5]. Deterministic methods also exist for uncertainty
propagation by solving adjoint equations for the underlying physics
of a problem; a popular tool for this in the nuclear community is the
TSUNAMI-3D code Rearden et al. [6] which can perform adjoint-
based eigenvalue sensitivity analysis for cross-sectional data.
Another study Price et al. [7] used both deterministic methods with
TSUNAMI-3D and Monte Carlo methods to evaluate the effect of
nuclear data uncertainty on single lattice kinf.

A useful overview for sampling based UQ/SA methods and how
these methods typically align to generate a complete workflow can
be found in this survey study Helton et al. [8]. One study that im-
plements a few different SA methods with application to the per-
formance of solid oxide fuel cells as a sample problem for
comparison of methods can be found at Radaideh and Radaideh [9].
Results from direct perturbation (called “one at a time” in this
study), Morris screening, standardized regression coefficients and
partial correlation coefficient were compared. Nonlinear methods
such as standardized rank regression coefficients and partial rank
correlation coefficients were used as well.

The present study includes parametric UQ/SA on the Advanced
Test Reactor Critical (ATRC) facility housed at Idaho National Lab-
oratory (INL). Due to the availability of data and demand for
directly-applicable results, this study offers a unique approach to
UQ/SA which includes consideration of Monte Carlo code uncer-
tainty in computed sensitivities, consideration of uncertainty from
directly measured parameters, a comparison of results obtained
from brute-force Monte Carlo UQ versus UQ obtained from a sur-
rogate model and finally both linear and nonlinear methods for SA.
Furthermore, parametric SA is often difficult to perform using
Monte Carlo based physics simulations due to the statistical un-
certainty in the final result. Overall, this can make parametric SA
difficult to perform using complex methods on high-fidelity
models. Due to the large amount of computational resources
dedicated to this study, SA is performed and a method for quanti-
fying the effect of statistical uncertainty in the output on computed
parametric sensitivities is presented. The effect of uncertainty in
fuel plate composition and fuel plate geometric parameters on
reactor keff are considered. The uncertainty in these parameters is
obtained directly from data reported by direct measurements or
fuel vendors, another unique aspect of this study is that sampled
parameters may not be those explicitly represented in the neu-
tronicsmodel (i.e. sampling B4Cmass in fuel and B-10 abundance as
separate uncertain parameters leads to an implicit distribution of B-
10 included in the sampled models). The methodology described in
this paper can act to guide UQ and SA efforts on expensive
computational models that use Monte Carlo methods for
calculation.

2. Data resources

This section presents information on the resources used to carry
out this study. First, a description of the full ATRC basemodel (made
for the neutronics code MC21) is given with a focus on character-
istics pertaining to the fuel elements. Next, information on the
computer code and cross-section data are given. Finally, uncer-
tainty sources and distributions for the two groups of uncertain
parameters are presented: (1) fuel geometry uncertainty and (2)
fuel composition uncertainty.

2.1. Description of the base model

The ATRC reactor is an open-pool serpentine reactor that uses
highly-enriched uranium fuel plates. The purpose of the ATRC is to
test core design experiments in terms of their reactivity
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characteristics and axial flux profiles prior to their irradiation in the
Advanced Test Reactor (ATR). A unique feature of the ATRC is that
reactivity is controlled with beryllium rotating cylinders (called
”outer shim control cylinders”). This allows for the axial flux profile
of the reactor to be minimally affected by the reactivity control
mechanisms. The model used in this analysis was created to reduce
the cost associated with ATRC operation by providing estimates on
important quantities in various experimental configurations to
support experimentally-observed results; it is made for the MC21
neutronics code Sutton et al. [10]. Due to the desired accuracy of the
results, the model is a 3-D full core model. This likely has a minimal
effect on the results because of the high axial uniformity present in
the ATRC core design. To provide some more information, all irra-
diation positions for experiments span the axial height of the core.
As mentioned previously, the control cylinders also span the axial
height of the core. The only control element which does not span
the height of the core are the neck shim rods. The other exception
to the high degree of axial homogeneity present in the real ATRC are
the experiments that are placed in the irradiation positions. Often,
these experiments are not uniform in the axial direction. However,
in the model used in this analysis, no experiments are modeled in
the irradiation positions so this effect is not present. Also, no
symmetry such as quarter-core or half-core symmetry is assu-
medddespite that symmetry existing in the model.

Fig.1 is included to give the reader a general idea of the design of
the ATRC reactor. In this diagram, there are number of experimental
irradiation positions for samples to be placed. As mentioned earlier,
the ATRC functions to quantify the reactivity insertion of experi-
mental samplesdnot to provide the high-flux environment to
actually irradiate these samples. Therefore, a unique opportunity
exists to perform the present analysis on fuel with negligible
burnup. It is not necessary to rely on computational predictions of
fuel isotopics which may incorporate systematic uncertainties that
may bias the results of the present work. The fuel elements are
arranged in a “serpentine” pattern in the core, they wrap around
the central experimental irradiation positions. Each element con-
sists of 19 curved fuel plates composed of an aluminum outer
cladding and inner fuel meat. Finally, two of three means of reac-
tivity control are shown in this diagram, the outer shims and the



Fig. 2. Diagram of fuel elements in ATRC, adapted from Kim and Schnitzler [12].

Table 1
Distributions for uncertain fuel geometry parameters.

Parameter Mean [cm] Standard Deviation [cm] 95% CI [cm]

Inset distance of plate 1 0.4953 0.0324 ±0.0635
Inset distance of plates 2-17 0.2413 0.0324 ±0.0635
Inset distance of plate 18 0.2921 0.0324 ±0.0635
Inset distance of plate 19 0.4953 0.0324 ±0.0635
Fuel meat height of plates 1-19 121.92 0.9719 ±1.905
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neck shims. The outer shims are the primary method of reactivity
control and rotate to either expose hafnium neutron poison or
beryllium reflector to the body of the core. The reactivity control
mechanisms not shown in the figure are the safety rods.

For this analysis, a few assumptions are made for this model.
First, for models used in the part of this study where uncertainties
in fuel composition are concerned, the fuel composition of the 38
perturbed fuel elements is homogenized. Due to the detail of
measured data available for the design of 38 out of 40 of the fuel
designs, the compositions of only 38 out of 40 fuel elements are
perturbed in the models used for the fuel composition study. Next,
the base loading configuration was used, it is thought that the
critical configuration of fuel elements and reactivity controls will
have a small effect on the observed results. Due to the insignificant
power output of the reactor, all material temperatures are kept at
300K.
Table 2
Distributions for uncertain fuel geometry parameters.

Parameter Mean

Uranium-aluminide mass in element [g] 1467
Boron-carbide mass in element [g] 5.280
Aluminum (X8001) mass in element [g] 1288
Total uranium mass in element [g] 1045
Total uranium-235 mass in element 973.5
Boron-10 abundance 0.1965
Uranium-234 fraction 0.0098
Uranium-236 fraction 0.0045
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2.2. Computational tools

As mentioned in Section 2.1 the MC21 Monte Carlo transport
code is used in Sutton et al. [10]. Capable of both neutron and
photon transport, the code is under continuing development at the
Naval Nuclear Laboratory. Continuous neutron energy cross-
sections are used in this study calculated using the ENDF/B-VII.1
nuclear data libraries Chadwick et al. [11].

For the first group of uncertain parameters, the fuel geometric
parameters, the model was run with a minimum of 1500 batches,
50 discard and 300,000 histories. Due to the large model size and
computational demand of the study, these Monte Carlo parameters
had to be adjusted according to the availability of computational
resources. Overall, the average Monte Carlo standard deviation
arising in keff for the models run with perturbed fuel geometric
parameters was 3.3 pcm with a maximum of 4.0 pcm. For the
second group of uncertain parameters, the fuel composition pa-
rameters, the model was run with a minimum of 3000 batches, 50
discard and 800,000 histories. Overall, the average Monte Carlo
Standard Deviation 95% CI

9.86 19.3
0.054 0.106
15.7 30.8
0.772 1.51
0.369 0.723
0.0038 7.50 � 10�3

1.00 � 10�4 1.96 � 10�4

4.59 � 10�5 9.00 � 10�5



Fig. 3. Implicit correlation between isotopic concentrations from converting sampled
quantities into code-input fuel compositions.
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standard deviation arising in keff for the models runwith perturbed
fuel composition parameters was 1.6 pcm with a maximum of 1.7
pcm. Although these code-reported uncertainties seem small, they
can have large impacts on computed sensitivity measures. This
problem can lead to difficulty in using stochastic methods for
neutron transport in sensitivity analysis, however, this paper pre-
sents a method to quantify the impact of these uncertainties on
computed sensitivities as detailed in Section 3.3. The computa-
tional workflow used to carry out this study is given in Appendix A..
For reference, each full model evaluation took around 1500 core-
hrs. All calculations were run on the high performance
computing clusters at Idaho National Laboratory. In order to
generate the text files provided to the physics code that represent
the models, the popular scripting tool Pythonwas used. Pythonwas
also used to parse and analyze the output coming from the
numerous calculations provided by MC21.
2.3. Fuel geometry uncertainty

Of the two sets used in this study, the first set of uncertain pa-
rameters involve aspects of the fuel meat geometry. Fig. 2 depicts a
cross-cut of the fuel elements used in the ATRC, with the relevant
geometry parameters marked. In this figure, the fuel meat is the red
region located at the center of each of the 19 fuel plates. The
smallest plate at the bottom of this figure is plate 1 with the largest
plate at the top being plate 19. The two parameters within the fuel
geometry set that will be varied in this analysis, across each of the 19
fuel plates independently, is the fuel inset distance and the fuel meat
height. Therefore, a total of 38 independent uncertain parameters
are included in this analysis. The fuel elements across the core are
kept identical by perturbing each of their 19 plates in the same
manner. The inset distance is the distance between the outer edge
of the fuel meat and the inner edge of the side plate. The inset
distance is measured to be 0.4953 cm for both the smallest and
largest fuel plates which lie on the outsides of the fuel element.
Plate 18 has a mean inset distance of 0.2921 cm. For the remaining
16 fuel plates this quantity is measured to be 0.2413 cm. The fuel
meat height is the total z-height of the fuel meat in the reactor. It is
reported to be 121.92 cm across all fuel plates. These parameters
were selected for analysis because they directly effect the charac-
teristics of fissile material in the core. This, combined with the high
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dimensionality of 38 parameters, will make them useful for
demonstrating the methods described in this paper.

Uncertainties in the fuel geometry are obtained directly from
facility documentation on the fuel elements. Throughout this study,
uncertain parameters are assumed to follow a Gaussian distribution
with a 95% confidence interval (CI) corresponding to the reported
uncertainty. As such, Table 1 gives the mean values and standard
deviations of the fuel geometry parameters.
2.4. Fuel composition uncertainty

The second set of uncertain parameters used in this study
involve fuel meat composition characteristics. Often, in fuel
composition uncertainty analyses, input uncertainty is directly
sampled for the isotopic composition of the fuel Radaideh et al.
[8,13]. In this study, mostly directly measured parameters, such as
mass of uranium and uranium-aluminide mass are independently
sampled. This allows for uncertainties to be used that are the direct
result of experimental measurements. Also, only 38 of the 40 total
fuel elements have a common design and are perturbed with this
group of parameters. The fuel meat consists of highly-enriched
uranium-aluminide powder mixed into an aluminum alloy
(X8001). Boron-carbide is included in the fuel mixture. In total, 5
quantities with reported experimental uncertainty and nominal
values are considered as uncertain parameters:

� Uranium-aluminide mass: mass of uranium aluminide powder
in fuel element

� Boron-carbide mass: mass of boron carbide in fuel element
� Aluminum (X8001) mass: mass of aluminum X8001 alloy in fuel
element

� Total uranium mass: total mass of all uranium isotopes in fuel
element

� U-235 mass: mass of U-235 isotope in fuel element

On top of these measured quantities, an additional 3 parameters
are considered to have uncertainty based on existing literature:

� Natural boron-10 abundance: this quantity plays an important
role in the neutronic behavior of any reactor due to its high
absorption cross-sections. It is considered here because there is
a moderately large uncertainty in the abundance of this isotope
given an arbitrary sample. The uncertainty and assumed mean
value for this quantity can be found at Meija et al. [14].

� U-234 fraction: particularly with high-enriched uranium fuel (as
is the case in the ATRC), uncertainties in the concentration of
this isotope may contribute to some final uncertainty in keff.
Nominal values for this quantity are obtained fromMcConn et al.
[15]; a 2% relative uncertainty is assumed.

� U-236 fraction: same justification as previous entry. Nominal
values for this quantity are obtained from McConn et al. [15]; a
2% relative uncertainty is assumed.

Nominal values and distribution parameters are reported in
Table 2.

For any model with these sampled parameters, calculations are
performed to convert the sampled quantities into an isotopic
composition. Following that the concentration of a particular
isotope may be dependent on multiple sampled quantities, an
implicit correlation can be quantified between isotopes in these
models made from sampled parameters. Fig. 3 shows the correla-
tion matrix between isotopes.
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3. Methodology

This section details the methods used for SA and UQ. The first
two subsections will compare two different methods of uncertainty
quantification: the Monte Carlo method and algebraic propagation
of uncertainty through a linear model. The advantages of both
methods will be discussed as well as the situations where each
method is best put to use. Next, details on how to create the linear
model are given, as well as a method to quantify the effect of code-
reported Monte Carlo uncertainty on linear model parameters.
Finally, four methods will be presented for quantifying the contri-
bution that the uncertainty of each input parameter has on the final
uncertainty of keff. Results derived from these methods can guide
the analyst in improving their computational models by identifying
inputs that are major contributors of response uncertainty.
3.1. Sampling-based UQ using total Monte Carlo

The primary method of in-depth uncertainty quantification for
highly complex models is the total Monte Carlo method Helton
et al. [8]. To explain this method, first it is necessary to define a
model of interest f which takes a number of inputs. These inputs
can be written as a vector, x, and the model can yield scalar output
y. This relationship, for the general model f, is written in mathe-
matical form in Equation (1).

f ðxÞ ¼ y (1)

In practice, f may be a highly complex model, that may be the
result of a very large number of inputs. However, only input pa-
rameters whose uncertainty should be propagated into the final
result of y are included in the input vector x for this formulation.
Next, it is necessary to describe the uncertainty of each parameter
in x using some probability distribution, this is shown in Equation
(2) where H is an arbitrary multivariate distribution. In this study,
H is a multivariate normal distribution with means and diagonal
covariance matrix described by Tables 1 and 2. Characterization of
the uncertainty in x is an important step that should be informed by
experimental data, reported manufacturing tolerances or expert
opinion.

x � H (2)

Often, for simplicity, a named distribution is assigned to each of
these parameters Ilas and Liljenfeldt [16]; Briggs et al. [17]. On top
of this, covariances can be considered between parameters which
may capture some tendency for groups of input parameters to be
more similar or dissimilar. Using the determined statistical
behavior of the input parameters, sets of input parameters should
be sampled (xi) a number of times (N) and carried through the
model to get some code-calculated result yi, this is mathematically
written in Equation (3).

f ðxiÞ ¼ yi i ¼ 1;2;…;N (3)

If a sufficient number of samples are calculated, it is expected
that the sample distribution of yi will converge. Conclusions can
then be drawn about the range of likely results, given the uncer-
tainty distributions defined for the input parameters. Common
metrics for analysis on the set of yi, i ¼ 1, 2, …, N include the mean
(y) and variance (s2y), shown in Equation (4) and (5), respectively.

y ¼ 1
N

XN
i¼1

yi (4)
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s2y ¼ 1
N

XN
i¼1

ðyi � yÞ2 (5)

The total Monte Carlo method for uncertainty quantification
offers the advantage of being applicable to almost any computa-
tional model. With a sufficient number of samples, nonlinear or
complex relationships between inputs and outputs can be
completely captured because no reduced-order models are used.
Furthermore, the large number of samples needed to obtain a
converged distribution for the output can be used for other ana-
lyses (as is done in the current study). The main drawback of this
method is its computational cost, depending on the number of
uncertain parameters in the input and the nature of the calculation,
this method can become infeasible. Also, it is important that this
method be performed with separate sensitivity methods such as
those described in Section 3.4. Finally, in projects which seek to
increase the accuracy of their analysis by iteratively performing UQ/
SA on the outputs and then improving input parameter uncertainty
estimations with focused efforts informed by the UQ/SA results, a
completely new set of calculations must be run for each new set of
parameter uncertainty estimations. To explain, if experiments are
carried out and a certain set of uncertainties are observed, some
amount of computational time can be dedicated to propagating
these uncertainties through a model. Then, the most influential
sources of uncertainty can be identified and more experiments can
be performed to reduce the uncertainty in those improtant input
parameters. In the case of total Monte Carlo method, a while new
set of models would need to be run in order to propagate the new
uncertainty set. This is not the case for the method described in
Section 3.2.
3.2. Algebraic UQ using surrogate model

The next method for uncertainty quantification that will be
discussed is algebraic uncertainty propagation using a surrogate
model. This method essentially consists of two steps: 1) creating
and evaluating the validity of a linear model trained on an input
domain which encompasses the uncertainty bounds for all input
parameters and 2) using random variable algebra to propagate
input-specific uncertainty into the output response of interest.

As mentioned, the first step is to create and evaluate a linear
model. Any general linear model can be expressed as given in

Equation (6). Here, bf denotes the linear approximation to the full

model f and bb denotes a vector of fitted linear model parameters in
RNþ1 where N is the number of uncertain input parameters. Here, a
constant 1 is prepended to x such that the translation parameter

(often referred to as bb0) can be contained in bb.
bf ðxÞ ¼ by ¼ xT bb (6)

From here, it is necessary to generate a data set of model inputs and
full model evaluations that will be used to train or evaluate the
linear model. In this study, the same samples used in total Monte
Carlo uncertainty propagation are used to create the linear models.
Following this, an overdetermined system of equations can be
constructed usingM pairs of input and code calculated responses as
shown in Equation (7). Finally, the normal equations can be used to

determine bb that minimizes least square error between linear

model predicted results, bf ðxÞ and code calculated result f(x).



D. Price, A. Maile, J. Peterson-Droogh et al. Nuclear Engineering and Technology 54 (2022) 790e802
2
6666664

xT1
xT2
«

xTM

3
7777775
bb ¼

2
664
f ðx1Þ
f ðx2Þ
«

f ðxMÞ

3
775 (7)

Equation (8) shows the solution to the normal equations where X is
theM� Nmatrix containing sampled input parameters and y is the

vector of code calculated results. Using this bb, the linear model can
be evaluated on a set of sampled inputs and code calculated results.

bb ¼ ðXTXÞ�1XTy (8)

Following the formation of the linear model, algebra of random
variables can now be used to propagate input parameter uncer-
tainty. First, as explained in the previous section, some probability
distribution must be assigned to x which is chosen to reflect the
uncertainty in each of the input parameters. First, the expected
value of by can be quantified, as is shown in Equation (9). This
equation is comparable to Equation (4) in the previous section.

EðbyÞ ¼ y ¼ EðxÞT bb (9)

From here, Equation (6) can be rewritten in terms of its covariance
as shown in Equation (10), given that by is a scalar result. By

expanding CovðxT bbÞ in terms of expected values, the relation given
in Equation (11) can be obtained. This result is directly comparable
to Equation (5) in the previous section. Both of these equations
indicate the uncertainty in a model prediction due to uncertainties
in x.

VarðbyÞ ¼ CovðxT bbÞ (10)

VarðbyÞ ¼ s2y ¼ bbT
CovðxÞbb (11)

This method offers the advantage of increased computational
efficiency for many application scenarios. It also offers direct in-
formation on the contribution of each input parameter to output
uncertainty through the fitted linear model parameters. On top of
these benefits, once the linear model is created, it is easy to prop-
agate new estimates of input distribution uncertainty through the
model (given that these new input distributions lie within the
domain used to create the linear model). This can be very useful for
continuing projects which seek to improve the accuracy of their
models with more accurate estimates for input parameter distri-
butions based on the results of previous UQ/SA. However, the major
drawback of this method is the linearity assumption implicit in the
creation of the surrogate model. This method may not be suitable
when input parameter uncertainties are large enough that the
output does not vary linearly with the input. Fortunately, the val-
idity of the surrogate model can be tested to evaluate the strength
of UQ using this method. Also, it is still possible for the computa-
tional cost of model training and testing to be significant given large
numbers of uncertain inputs or expensive computational models. It
is also worth mentioning that the linearity in the relationship be-
tween a certain set of input parameters and an output does not
guarantee linearity between that set and a different output
parameter. The relationships between input and outputs should
always be evaluated for linearity. Later, in Section 4.2 the results
and computational cost of this method will be compared to the
total Monte Carlo method.
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3.3. Multiple linear regression with uncertain data

In the nuclear reactor modeling and simulation field, it is often
difficult to perform SA using a Monte Carlo neutronics codes
because the uncertainty associated with calculated results can
introduce large errors in many sensitivity methods. The application
scenario for this study uses a high-complexity model created for a
Monte Carlo code, therefore, it is important to investigate the val-
idity of the results from SA given that there exists MC21 reported
uncertainty in keff. As will be shown, naive application of sensitivity
methods on data with Monte Carlo uncertainty can lead to inac-
curate results.

The intention of the following formulation is to capture the ef-
fect of code-reported result uncertainty on the linear model pa-
rameters calculated with the method described in Section 3.2. To
capture this, it is helpful to first characterize the vector y, shown in
Equation (8), as a random variable with some multivariate distri-
bution. Here, a normal distribution will be used to describe the
uncertainty in each code calculated f(xi), it will be assumed that the
code-calculated outputs are independent with identical variances
(this will often be the case for results generated from separate
calculations of a Monte Carlo neutronics code). Following this,
Equation (12) gives a multivariate distribution with mean my and
covariance s2mcI. Each my,i is the code-reported estimate for the
response of interest f(xi). s2mc is the variance reported by the Monte
Carlo code for the relevant result and it is multiplied by the identity
matrix I to yield a diagonal covariancematrix with identical entries.

y � Nðmy; s
2
mcIÞ (12)

With this distribution defined, Equation (8) can be written in terms
of covariances in Equation (13).

CovðbbÞ ¼ CovððXTXÞ�1XTyÞ (13)

After expressing the covariance in terms of the linear expected
value operator, some algebra can be performed to obtain the final
expression shown in Equation (14), this result can also be found in
Faber [18].

CovðbbÞ ¼ s2mc

�
XTX

��1
(14)

These methods will be used to provide uncertainty bounds on
the linear model parameters calculated in Section 4.1.
3.4. Linear and nonlinear sensitivity analysis

Four separate SA methods will be used in this study, two linear
methods and two nonlinear methods. The first method to be pre-
sented is the standardized regression coefficient (SRC) method. Put
simply, this method fits a linear model between inputs and outputs
after each has undergone a standardization transformation. The
standardization transformation is defined for the arbitrary vector s

in Equation (15). Here, s
̄
refers to a vector with a mean of s and

standard deviation of ss.

s0 ¼ s� s
ss

(15)

The standardization transformation is performed on the vector y
and column-wise on the design matrix, X. Following this, linear
regression is performed on the standardized forms of X and y using

Equation (8). The resulting bb yield dimensionless sensitivity co-
efficients that quantify the contribution of the uncertainty in each



Fig. 4. Estimates for linear model parameters as a function of number of samples used for estimation. The left plot shows the linear model parameters corresponding to the fuel
meat height for each of the 19 plates, the right plot shows the linear model parameters corresponding to the inset distance for each of the 19 plates.

Fig. 5. Values for linear model parameters created using 350 samples. Uncertainties in bb due to code-reported Monte Carlo uncertainty in keff used to train the model also shown.
The left plot shows the linear model parameters corresponding to the fuel meat height for each of the 19 plates, the right plot shows the linear model parameters corresponding to
the inset distance for each of the 19 plates. The error bars correspond to the 95% confidence interval for these values.
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input parameter to the uncertainty in the scalar output. This
method is particularly useful when the input parameters are found
to be linearly related to the output. If this is not the case, an alter-
native version of this, called standardized rank regression coeffi-
cient (SRRC) should be used Hamby [19].
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SRRC can be used for nonlinear applications because it draws
conclusions about the monotonicity of the relationship between an
input and output, not necessarily the magnitude of effect (which
can be nonconstant over the domain). This method is similar to the
SRC method except the rank transformation is used instead of the
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standardization transformation. For the rank transformation, each
element in s is replaced by an integer which indicates its position if
the set of all of s was ordered smallest to largest. Again, this rank
transformation is performed on the vector y and column-wise on
the design matrix, X. Following this, linear regression is performed
on the ranked forms of X and y using Equation (8).

The next sensitivity method is the partial correlation coefficient
(PCC) method. This method seeks to report a correlation between a
particular input variable and the output while controlling for con-
founding correlations from other input variables, calculation
methods for partial correlation coefficients in high-dimensional
input space is nontrivial Cram�er [20]. This method relies on line-
arity of the input/output relationship. For this study, a python-
based tool for calculation of partial correlation coefficients is used
Vallat [21]. For reference, the formula for a 2-D input space is given
in Equation (16). Here, y is used to indicate the output of interest
and x1 and x2 are the two input variables. ra,b denotes the Pearson
correlation coefficient between arbitrary variable a and b and ry;x1jx2
indicates the PCC between x1 and y when controlling for x2. The
Pearson correlation coefficient is defined in Equation (17).

ry;x1jx2 ¼
rx1;y � rx1;x2rx2;yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� r2x1;x2Þð1� r2x2;yÞ
q (16)

ra;b ¼
PN

i¼1ðai � aÞðbi � bÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðai � aÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðbi � bÞ2

q (17)

The final method, the partial rank correlation coefficient
method (PRCC), involves performing the analysis described in the
previous paragraph on the rank-transformed versions of X and y.

The sensitivity measures resulting from these methods are
useful in characterizing the relationship between the uncertainty in
the input parameters to the uncertainty in the final output. When
these sensitivity measures are compared across methods, it is
important to only compare them on the basis of their relative
ranking within the results of a single method and sign. These
sensitivity methods are performed for both sets of uncertain pa-
rameters in Section 4.3, the input variables with the largest influ-
ence on the uncertainty in keff are identified.
4. Results

4.1. Linear model creation and evaluation

The following subsection will be further divided into the results
pertaining to a linearmodel created for the uncertain fuel geometry
parameters and those pertaining to a linear model created for the
uncertain fuel composition parameters. Each of these smaller
subsections will show the convergence of the linear model pa-
rameters as a function of samples run. Following this, some
threshold will be determined for convergence and the remaining
unused samples will be used for model evaluation. Finally, the
methodology described in Section 3.3 will be used to quantify the
effect that code-reported Monte Carlo uncertainty has on the linear
model parameters of each model.
4.1.1. Fuel geometry parameters

The distributions for the uncertainty in the fuel geometry pa-
rameters, as listed in Table 1 are used to generate a set of samples
that can be used for model training and evaluation. These distri-
butions were selected for two reasons:
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1. These linearmodels are created to predict reactor characteristics
when the parameters fall within the domain of their reported
uncertainty (as should be the case for realistic reactor opera-
tion). Therefore, by sampling the parameters only in this
domain, the model will be optimized to predict reactor behavior
in a realistic domain. These linear models are not being used to
predict reactor characteristics when the concerned parameters
may be deliberately perturbed outside the domain of their
uncertainty.

2. On a practical level, this allows for the same calculation set to be
used for both total Monte Carlo uncertainty propagation and the
creation of the linear models.

The computational workflow depicted in Appendix A. was used
to generate a set of sampled input parameter sets and model
results.

In total, 698 MC21 inputs were generated using sampled fuel
geometry parameters and keff was calculated for each input. Such a
large number of samples was necessary due to the large number of
uncertain input parameters considered in this analysis. Fig. 4 shows

an estimation for the linear model parameters bb, calculated using
Equation (8) as a function of number of samples. This figure is
included to show the ranking and convergence of the linear model
parameters. Fig. 5 is included to show the uncertainty and value of
the linearmodel parameters with black error bars. In this figure, the
linear model parameters corresponding to both the fuel meat
heights and inset distances are shown. These results can be viewed
as a preliminary sensitivity analysis because the change in the
response of interest, keff, is estimated for some change in a single
parameter. As is seen through the sign of the linear model pa-
rameters relating to the fuel plate inset distance, increases in the
inset distance reduce core criticality, this is expected because by
increasing the inset distance, total fuel volume is decreased. The
opposite can be said about increasing the fuel meat height, hence
the positive sign associated with the linear model parameters
relating to these inputs. Based on these results, it is decided that the
linear model used for the evaluation of the linearity assumption
will be generated using the first 350 samples. Although it appears
that the linear model parameters pertaining to the fuel meat height
seemingly did not converge even for the full 698 sample set, results
shown later in this section will attribute this to the Monte Carlo
uncertainty associated with code calculation. Also, the seemingly
parabolic shape of the linear model parameters associated with the
inset distances is caused by the higher fluxes in the outer fuel
plates. With higher fluxes, the dimensions of these plates are more
influential on the core keff than the inner plates. This trend is much
weaker in the linear model parameters relating to the fuel meat
height due to both the significant uncertainty associated with these
quantities as well as the differing plate widths which cause a
perturbation in plate 1 result in less added fuel mass than the same
perturbation in plate 19. This geometrical effect diminishes the
importance of the fuel meat height relating to the lower-numbered
fuel plates.

Following this, the uncertainty in the linear model parameters
due to Monte Carlo uncertainty in code-calculated keff will be
addressed. Using the formulation given in Section 3.3 an uncer-
tainty can be assigned to each of the linear model parameters that
comes about from the Monte Carlo uncertainty in the code-
reported keff. The magnitude of this uncertainty is shown in
Fig. 5. The relative uncertainties associated with the fuel meat
height parameters are much larger than those associated with the
fuel plate inset distance. Earlier, the linear model parameters
shown in Fig. 4 did not seem to converge even at the maximum
number of samples. This random noise is not an effect of an



Table 3
Convergence of linear model parameters for number of samples run. bbN indicates the linear model parameter estimated with N samples for each of the input parameters.

Parameter bb10
bb30

bb60
bb100

bb140
bb282

Uranium-aluminide mass in element [pcm/g] 0.103 �0.0154a �0.0453 �0.0217 �0.0210 �0.0474
Boron-carbide mass in element [pcm/g] �1479 �1466a �1463 �1462 �1465 �1462
Aluminum (X8001) mass in element [pcm/g] 0.190 �0.0754a �0.0738 �0.0727 �0.0734 �0.0691
Total uranium mass in element [pcm/g] �7.08 �7.09* �6.29 �6.37 �6.34 �6.37
Total uranium-235 mass in element [pcm/g] 37.6 28.3a 28.6 28.0 28.1 27.9
Boron-10 abundance [pcm/%] �406 �397a �397 �397 �397 �398
Uranium-234 fraction [pcm/%] �268 �209a �163 �164 �179 �213
Uranium-236 fraction [pcm/%] �319 440a �33.1 �0.576 �29.5 11.6

a Indicates calculated bb is converged within the bounds of its uncertainty. See text for details.

Table 4
Uncertainties in linear model parameters due to Monte Carlo uncertainty in code-calculated keff.

Parameter Absolute Uncertainty Relative Uncertainty

Uranium-aluminide mass in element 0.028 pcm/g 131%
Boron-carbide mass in element 5.18 pcm/g 0.35%
Aluminum (X8001) mass in element 0.016 pcm/g 22%
Total uranium mass in element 0.287 pcm/g 4.53%
Total uranium-235 mass in element 28.1 pcm/g 1.13%
Boron-10 abundance 0.66 pcm/% 0.17%
Uranium-234 fraction 28.4 pcm/% 15.8%
Uranium-236 fraction 64.0 pcm/% 217%

D. Price, A. Maile, J. Peterson-Droogh et al. Nuclear Engineering and Technology 54 (2022) 790e802
inadequate number of samples and is instead noise that will exist in
linear model parameter estimation for any number of samples due
to uncertainty in the training set. Put simply, the fuel meat height
was not perturbed enough to induce an effect on keff that is as
clearly discernible from the random noise on keff generated from
the Monte Carlo calculation method. Although the sign and general
magnitude of these linear model parameters can be seen, a clear
ranking of the parameters is not.

Finally, it is important to evaluate the validity of the linear
model. Although the linear model will not necessarily be used
explicitly to predict keff, this analysis gives some insight into the
true linearity of the relationship between the fuel geometry pa-
rameters and keff. Linear models will be used later in Section 4.2 to
propagate parametric uncertainty through the ATRC model. One
Fig. 6. 95% confidence interval estimate for uncertainty in keff due to parametric un-
certainty in fuel geometry parameters as a function of number of samples used to
generate the estimate. Uncertainty propagation methodologies used to generates these
estimates are described in Section 3.1 and Section 3.2.
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useful measure of the accuracy is the regression coefficient (R2), it
measures the closeness of fit of the linear model to the data used to
create the model. For the linear model created using the afore-
mentioned 350 samples, the R2 value is 0.997. Furthermore, when
using this linear model to predict the remaining 348 samples, a
mean absolute error of 3.52 pcm was observed. From these two
metrics, it seems that the response of keff to perturbations in the
inset distance and fuel meat height are largely linear in the domain
explored in this study.
4.1.2. Fuel composition parameters

The distributions for the uncertainty in the fuel composition, as
Fig. 7. 95% confidence interval estimate for uncertainty in keff due to parametric un-
certainty in fuel composition parameters as a function of number of samples used to
generate the estimate. Uncertainty propagation methodologies used to generates these
estimates are described in Section 3.1 and Section 3.2.



Fig. 8. Estimates for SRC and PCC sensitivity measures for increasing number of samples for uncertain parameters pertaining to fuel composition.
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listed in Table 2 are used to generate a set of samples that can be
used for linear model training and evaluation. For these parame-
ters, 282 calculations in total were performed to obtain sets of
sampled input parameters and values of keff. This set of parameters
is different from the fuel geometry parameters because these pa-
rameters are more distinct from each other (in unit and physical
representation). In the previous example, the calculated linear
model coefficients could be compareddwithin the same parameter
across plates. For the fuel composition parameters, this is not the
case because each parameter has a significantly different meaning
and often different units. This demonstrates the need for more
advanced sensitivity methods to draw conclusions about the rela-
tive importance of parameters, as will be shown in Section 4.3.

First, the convergence of the linear model parameters will be
discussed. Due to the large differences in magnitude for the
assorted linear model parameters, the convergence must be shown
in tabular form in Table 3. However, if the reader wishes to see the
convergence in a pictorial form, Fig. 8 shows the convergence of the
standardized form of these parameters. Nevertheless, all estimates
for the linear model parameters converge long before the 140
samples that will be used later to evaluate the linearity assumption.
The convergence criteria is not as simple as finding the number of

samples needed for the change in estimated bb to be reasonably
small, this is because the Monte Carlo uncertainty in the MC21
results causes there to be constant variability in these estimated
parameters. With the fuel geometry set of parameters, there was a
smaller uncertainty in the linear model parameters than is the case
in the current fuel composition set and alsomore samples were run
so convergence was easier to identify. Therefore, for this set, it is
important to establish a convergence criteria that takes into ac-

count sample-size independent variability in the estimation. If bbN
is the estimate for the linear model parameter made with N sam-

ples, it will be considered converged if bbN�1 and bbNþ1 are within

the 95% confidence interval of bbN , as determined using the uncer-
tainty calculated given in Equation (14). From this, a sample size of
140 can be determined as sufficient to create a linear model with
converged parameters. These coefficients can be interpreted as the
change in keff for a perturbation to a particular input parameter
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while keeping all the other parameters fixed. Hence, the very small
reactivity effect in “Uranium-aluminide mass in element” can be
attributed to the fact that uranium-235 content in the fuel has been
fixed by another parameter in the set.

Table 4 gives the 95% confidence interval uncertainty of the 8
linear model parameters, calculated according to the methodology
described in Section 3.3, using 140 samples. From the results, it is
clear that even though the uncertainty in keff was kept below 2 pcm
for the MC21 calculations, there can be large uncertainties associ-
ated with computed linear model parameters. This is due to the
combination of their small parametric uncertainty and small effect
on calculated keff. Therefore, for parameters with unreasonably
large uncertainty in their computed coefficients, it is required that
perturbations cause parameters to lie outside the bounds of their
uncertainty in order to obtain accurate results. As will be seen in
Section 4.3, these are also likely to be parameters whose parametric
uncertainty has the smallest effect on keff.

Lastly, it is important to evaluate the validity of the linear model.
This model will be used in the next section, Section 4.2, to propa-
gate parametric uncertainty through the ATRCmodel. Although the
uncertainty in the linearmodel parameters was reported, this is not
a complete description of the uncertainty associated with results
calculated using the linear model. The R2 value associated with the
linear model is 0.999. To test whether this linearity assumption is
valid for perturbations to the input parameters within domains of
their respective uncertainty, this linear model is used to estimate
the keff of the remaining 142 samples. The resulting mean absolute
error was 1.51 pcm, therefore, it can be determined that the linear
model has a high degree of accuracy when predicting keff of model
configurations whose parameters lie within the described domains
of uncertainty.

4.2. Comparison of uncertainty propagation methods

Sections 3.1 and 3.2 describe two methodologies for propa-
gating uncertainty through complex models. The first, called the
“total Monte Carlo method,” repeatedly samples from distributions
assigned to each input parameter of interest. These distributions
are carefully selected to reflect the uncertainty associated with that



Table 5
Sensitivity measures for five most influential fuel geometry parameters on keff
uncertainty.

Parameter SRC PCC SRRC PRCC

Inset distance of plate 1 �0.336 �0.985 �0.346 �0.785
Inset distance of plate 19 �0.323 �0.981 �0.305 �0.743
Inset distance of plate 2 �0.304 �0.979 �0.313 �0.754
Inset distance of plate 18 �0.275 �0.974 �0.269 �0.701
Inset distance of plate 17 �0.247 �0.967 �0.252 �0.674
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parameter. Then, calculations are performed on many sets of
sampled parameters to get some distribution for the response of
interest. This distribution in the response of interest treated across
the number of samples can be said to reflect the expected uncer-
tainty associated with that calculated result. The second uses a
linear surrogate model to algebraically propagate uncertainty. For
this method, a domain of interest is identified that encompasses the
expected uncertainty for each parameter. It is important that this
domain is large enough to encompass the uncertainty of the rele-
vant parameters such that extrapolation is not performed if using
the model to analyze the full range of uncertainty. However, the
larger the domain becomes, the relationship between input and
output becomes less likely to be linear. Then, a training set can be
created by sampling from this domain and performing full calcu-
lations on the samples. Linear regression can then be performed on
the input/output pairs to get a linear model that can be used to
algebraically propagate uncertainty according to Equation (11).

The estimated uncertainty in keff due to the fuel geometry pa-
rameters, as a function of number of samples used to generate the
estimate, is shown in Fig. 6. The equivalent plot for the fuel
composition parameters is shown in Fig. 7. In these figures, x-axis
for the uncertainties algebraically calculated with the linear model
indicate the number of samples used to train themodel. From these
results, it is clear that propagating uncertainty using the linear
model provides a more accurate estimate of uncertainty for small
numbers of samples. This can be extremely useful in reducing the
computational cost of uncertainty propagation for models with
large evaluation times. Also, if the parametric uncertainties listed in
Tables 1 and 2 were reevaluated, these new uncertainties can be
trivially propagated through the linear model given that the
reevaluated uncertainties are within the domain of sample space
used to train the linear model. However, it is important that the
validity of the linear relationship between inputs and outputs is
evaluated as was done in Section 4.1. The total Monte Carlo method
may be more useful for predicting the uncertainty in a model
output when there are highly nonlinear relationships between in-
puts and outputs. Given the high accuracy of the linear model re-
ported in the previous section, total Monte Carlo propagation may
not be an efficient method to perform uncertainty quantification
for the parameters explored.

Furthermore, due to the higher dimensionality of the input
space associated with the fuel geometry parameters, it takes longer
for the estimated uncertainty to converge for both methods used as
Table 6
Sensitivity measures for three most influential fuel composition parameters on keff
uncertainty.

Parameter SRC PCC SRRC PRCC

Boron-10 abundance �0.927 �0.999 �0.916 �0.981
Boron-carbide mass in element �0.460 �0.999 �0.433 �0.922
Total uranium-235 mass in element 0.092 0.992 0.085 0.428
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compared to the time it takes for the fuel composition parameters
to converge. This further demonstrates the usefulness of using
linear regression to create an inexpensive model to propagate un-
certainty. In both figures, there is noise in the estimate for the
uncertainty even at large values of N. For both parameter sets
explored, this noise is on the order of 3 or 4 pcmwhich is assumed
to have a negligible effect on the results. In the end, the uncertainty
in the fuel geometry parameters had a smaller total effect on keff
than the uncertainty in the fuel composition parameters. Among
other possibilities, one contributing factor for this could be that the
fuel plate geometric parameters were perturbed independently by
plate. This means that it is very unlikely for each plate to be
simultaneously perturbed in the same direction, this leads to lower
total deviation from the nominal plate dimensions than if all plates
were perturbed simultaneously. In the case of the fuel composition,
the plates were perturbed simultaneously. This may cause a com-
pounding effect for each plate perturbed and lead to a larger overall
effect on keff.

4.3. Sensitivity method results

The final set of results presented in this paper relate the un-
certainty in the various input parameters to the total uncertainty
observed in the output parameter of interest (here, keff). Four
different methods are used, each described in Section 3.4. The SRC
method performs linear regression on the input parameters sets
and output after each has undergone a standardization trans-
formation. By rescaling the input parameters, the effect on the
response of interest can be quantified relative to the range of their
uncertainty. To explain, given two parameters of equal influence
prior to rescaling (equal b parameters), where one of these two
parameters has a larger uncertainty bound, it can be said that the
parameter with the larger uncertainty bound contributes more to
the output uncertainty than the parameter with the smaller un-
certainty bound. After the standardization transformation has been
performed, the distributions of both these parameters is identical
but the parameter with the larger uncertainty bound has under-
gone a dilation more significant than its counterpart. Therefore, a
unit perturbation to each of these transformed parameters sepa-
rately will register as a more significant effect for the parameter
whose bound was more significantly dilated. The end result is that
the SRC method collapses the competing effects of range of un-
certainty andmagnitude of influence on output into a single metric.
The next method is the PCC method, this method finds correlation
between an input parameter and output parameter while ac-
counting for confounding correlations with other parameters. As a
correlation coefficient, it indicates the explained total variance (not
just uncertainty) in keff that can be attributed to a particular input
parameter. Following these two methods are two nonlinear
methods, SRRC and PRCC, which operate on the rank transformed
versions of the data. Across the four methods, it is useful to
compare the signs of the computed sensitivity measures as well as
the rankings. Comparing the numerical values of the sensitivity
measures across methods will not yield accurate conclusions.

Table 5 shows the five most sensitive fuel geometry parameters
and their corresponding sensitivity measures for the four methods.
All 5 of these parameters pertain to the fuel inset distance, none
involve the fuel meat length. Also, the outer plates are ranked as the
most influential. This is due to the higher neutron fluxes in these
plates. The sign and ranking of these parameters across the four
methods indicate strong agreement. The only difference in ranking
is the inset distance of plate 19 and inset distance of plate 2 are
switched for the nonlinear methods. This consistency across
methods indicates that these results can be used to accurately
identify input parameters whose individual uncertainty has the



Fig. A.1. Computational workflow used in this study.
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largest impact on the overall uncertainty of keff. In addition, it is
helpful to see that the sensitivity measures decrease gradually
across these 5 parameters. This demonstrates that efforts should be
taken to reduce the uncertainty as many parameters a possible in
order to increase the accuracy of keff predictions because there is no
clear cut-off among the 5 parameters shown.

Table 6 shows the sensitivity results for the three most sensitive
parameters in the fuel composition parameter set. Fig. 8 shows the
convergence of the SRC and PCC measures for this set because a
convergence figure for the linear model parameters was not given
in Section 4.1.2. Again, the ranking and sign of these sensitivity
measures agree across the four methods used. These sensitivity
measures are more useful than the linear model parameters
included in Table 3 in determining input parameters with the
largest effect on keff uncertainty because of the transformations
applied to the data set. In this nondimensionalized form, direct
comparisons can be made between parameters within each
method. For example, these results indicate that the single largest
contributor to output uncertainty by a significant margin is the B-
10 abundance. The SRC method indicates the nondimensionalized
slope of the linear relationship between input and output along a
particular dimension. The boron-10 abundance has twice the SRC
measure than the next following parameter, this gives a strong
suggestion to scientists and engineers that the uncertainty in this
parameter should be reduced in order to obtain more accurate
simulation results. This type of analysis is very useful in situations
where performing the measurements to reduce parametric un-
certainty can be very expensive because it can clearly identify the
most important parameters to be investigated. As well, the three
most sensitive parameters listed are also the three parameters with
the smallest uncertainty in the linear model parameters due to the
Monte Carlo error. This is an intrinsic benefit to this methodology,
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the parameters identified with the largest influence on output
uncertainty are also those least affected by random error in the
calculated results. Qualitatively explained, this is because these
parameters have the largest effect on keff when considering both
the range of their uncertainty bounds and the physical relationship
between the parameter and keff. Therefore the “signal-to-noise”
ratio when analyzing these parameters is much better.
5. Conclusions

This paper has provided a detailed methodology for performing
SA and UQ on high fidelity models which require Monte Carlo
calculation techniques to obtain reactor characteristics. Often, SA in
particular is difficult to perform when results are subject to un-
certainty from the Monte Carlo calculation techniques because
small effects on keff can be lost in the stochastic noise of the result.
This paper has identified a technique to algebraically evaluate the
validity of computed linear sensitivities. Furthermore, the results
from the dimensionless sensitivity analysis identify the parameters
whose uncertainty contribute most to the overall uncertainty
associated with keff. The most influential parameters were also
those least affected by the Monte Carlo uncertainty. Future work
should explore this result and draw connections between the SRC
method and the method to quantify the effect of Monte Carlo un-
certainty on linear model parameters.

Also, two different UQ methods were used. Due to the compu-
tational resources made available for this study, a method which
used algebraic uncertainty propagation through a linear model was
compared to the total Monte Carlo method for uncertainty quan-
tification. An unfortunate reality of reduced order modelling is that
as the need for a reduced order model increases due to the cost of
the full calculation, the capability to evaluate the reduced-order
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model decreases for the same reason. In this study, the linear model
was created and evaluated with a large number of full-code cal-
culations. By comparing the results derived by the less-expensive
propagation using the reduced order linear model with the re-
sults derived by the expensive total Monte Carlo method, it can be
said that the linear model is sufficient in predicting the uncertainty
in keff for the domain of parameters explored. Future work should
explore reactor parameters which are less-likely to have linear
relationships with keff. Exploration of these parametersmay require
more advanced statistical techniques to create efficient data-driven
models.

Declaration of competing interest

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgments

This manuscript has in part been authored by Battelle Energy
Alliance,LLC under Contract No. DE-AC07-05ID14517 with the U.S.
Department of Energy. The United States Government retains and
the publisher, by accepting the paper for publication, acknowledges
that the United States Government retains a nonexclusive, paid-up,
irrevocable, world-wide license to publish or reproduce the pub-
lished form of this manuscript, or allow others to do so, for United
States Government purposes.

Also, this research made use of the resources of the High Per-
formance Computing Center at Idaho National Laboratory, which is
supported by the Office of Nuclear Energy of the U.S. Department of
Energy and the Nuclear Science User Facilities under Contract No.
DE-AC07-05ID14517.

The authors would also like to acknowledge Daniel Kelly and
Scott Spychala as well as the Naval Nuclear Laboratory for their help
in code/model development and technical support as well as Ryan
Little from the ATR facility. We would also like to thank Majdi
Radaideh from the Massachusetts Institute of Technology for the
valuable discussions on sensitivity analysis methods we had in the
early stages of this work.

Appendix A. Computational Workflow

This sectionwill detail theworkflow used to carry out this study,
it is included to provide an understanding as to how the sampling
process was executed. A flow chart is given in Fig. A.1 that goes
through the scripting, MC21 calculation and data aggregation. This
workflow was mostly carried out with Python scripting. The parts
of this chart labeled “abstract data”were typically stored as various
data structures in the Python coding language and referencedwhen
needed. The workflow starts in the top-left corner of the chart,

where X
!

is some set of uncertain input parameters with mean m!
and covariance S. From here, a set of x!i random samples can be

drawn from the random variable X
!
, these random samples are

recorded in a.csv file for later analysis. Separately from this, a
template input file was prepared for the ATRC model. This template
consisted of a nominal ATRC model file with input parameters of
interest replaced by easily identifiable text strings. This file, along

with the sampled x
⃗

i’s were fed into the SimpleSample python
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module. This module was created specifically for this study, it re-
places the identifiable text strings in the template with the values
corresponding to a sample. If multiple samples are fed into it, it will
produce multiple output files, each one with the identifiable text
strings replaced with the sampled values. In this case, the ATRC
model was written using a java API so it must be compiled before a
final MC21 input file is obtained. From here, MC21 is run on each of
the perturbed input files, labeled as “x#.inp” in the diagram, to
obtain output files for each sample, labeled as “x#.out” in the dia-
gram. Finally, each response of interest (denoted as yi) can be
extracted from each output file and stored in a.csv file.
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