Browse > Article
http://dx.doi.org/10.1016/j.net.2021.03.010

Uncertainty quantification in decay heat calculation of spent nuclear fuel by STREAM/RAST-K  

Jang, Jaerim (Department of Nuclear Engineering, Ulsan National Institute of Science and Technology)
Kong, Chidong (Department of Nuclear Engineering, Ulsan National Institute of Science and Technology)
Ebiwonjumi, Bamidele (Department of Nuclear Engineering, Ulsan National Institute of Science and Technology)
Cherezov, Alexey (Department of Nuclear Engineering, Ulsan National Institute of Science and Technology)
Jo, Yunki (Department of Nuclear Engineering, Ulsan National Institute of Science and Technology)
Lee, Deokjung (Department of Nuclear Engineering, Ulsan National Institute of Science and Technology)
Publication Information
Nuclear Engineering and Technology / v.53, no.9, 2021 , pp. 2803-2815 More about this Journal
Abstract
This paper addresses the uncertainty quantification and sensitivity analysis of a depleted light-water fuel assembly of the Turkey Point-3 benchmark. The uncertainty of the fuel assembly decay heat and isotopic densities is quantified with respect to three different groups of diverse parameters: nuclear data, assembly design, and reactor core operation. The uncertainty propagation is conducted using a two-step analysis code system comprising the lattice code STREAM, nodal code RAST-K, and spent nuclear fuel module SNF through the random sampling of microscopic cross-sections, fuel rod sizes, number densities, reactor core total power, and temperature distributions. Overall, the statistical analysis of the calculated samples demonstrates that the decay heat uncertainty decreases with the cooling time. The nuclear data and assembly design parameters are proven to be the largest contributors to the decay heat uncertainty, whereas the reactor core power and inlet coolant temperature have a minor effect. The majority of the decay heat uncertainties are delivered by a small number of isotopes such as 241Am, 137Ba, 244Cm, 238Pu, and 90Y.
Keywords
PWR; Decay heat; Spent nuclear fuel; Uncertainty quantification; Back-end cycle;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. Ebiwonjumi, S. Choi, M. Lemaire, D. Lee, H.C. Shin, Lee Hs, Validation of lattice physics code STREAM for predicting pressurized water reactor spent nuclear fuel isotopic inventory, Ann. Nucl. Energy 120 (2018) 431-449, https://doi.org/10.1016/j.anucene.2018.06.002.   DOI
2 B. Ebiwonjumi, C. Kong, P. Zhang, A. Cherezov, D. Lee, Uncertainty quantification of PWR spent fuel due to nuclear data and modelling parameters, Nucl. Eng. Technol. (2021), https://doi.org/10.1016/j.net.2020.07.012.   DOI
3 R. Ihaka, R. Gentleman, R: a language for data analysis and graphics, J. Comput. Graph Stat. 5 (3) (1995) 299-314.   DOI
4 M. Matsumoto, T. Nishimura, Mersenne Twister: a 623-dimensionally equidistributed uniform pseudorandom number generator, ACM Trans. Model Comput. Simulat 8 (1) (1998). January pp.3-30.   DOI
5 N. Garcia-Herranz, O. Cabellos, J. Sanz, Applicability of the MCNP-ACAB system to inventory prediction in high burn-up fuels: sensitivity/uncertainty estimates, in: Proc. Int. Conf. on Mathematics and Computation, M&C2005, Avignon, France, 2005.
6 D. Smith, Evaluated nuclear data covariances: the journey from ENDF/B-VII.0 to ENDF/BVII.1, Nucl. Data Sheets 112 (12) (2011) 3037-3053, https://doi.org/10.1016/j.nds.2011.11.004.   DOI
7 P. Talou, P. Young, T. Kawano, et al., Quantification of uncertainties for evaluated neutron-induced reactions on actinides in the fast region, Nucl. Data Sheets 112 (12) (2011) 3054-3074, https://doi.org/10.1016/j.nds.2011.11.005.   DOI
8 S. Hoblit, Y.-S. Cho, M. Herman, et al., Neutron cross section covariances for structural materials and fission products, Nucl. Data Sheets 112 (12) (2011) 3075-3097, https://doi.org/10.1016/j.nds.2011.11.006.   DOI
9 A. Quarteroni, R. Sacco, F. Saleri, Numerical Mathematics, 2007.
10 S. Borresen, T. Bahadir, M. Kruners, Validation of CMS/SNF Calculations against Preliminary CLAB Decay Heat Measurements, Transactions of the American nuclear society, Omni Shoreham Hotel Washington, D.C, 2004. November 14-18.
11 S. Borresen, Spent fuel analyses based on in-core fuel management calculations, in: Proc. of the PHYSOR 2004, The Physics of Fuel Cycles and Advanced Nuclear Systems: Global Developments, Chicago, Illinois, 2004. April 25-29.
12 J. Jang, B. Ebiwonjumi, W. Kim, A. Cherezov, J. Park, D. Lee, Validation of Isotope Inventory Prediction for Back-End Cycle Management by Two-step Method, 2021, https://doi.org/10.1016/j.net.2021.01.009.   DOI
13 Status of spent fuel storage for the first quarter of 2019 [Online]. (Available from: http://www.khnp.co.kr/board/BRD_000179/boardView.do?pageIndex=1&boardSeq=70138&mnCd=FN051304&schPageUnit=10&searchCondition=0&searchKeyword=, 2019-. Accessed on April 2019.
14 G. Ilas, Liljenfeldt H, Decay heat uncertainty for BWR used fuel due to modeling and nuclear data uncertainties, Nucl. Eng. Des. 319 (2017) 176-184, https://doi.org/10.1016/j.nucengdes.2017.05.009.   DOI
15 J. Jang, B. Ebiwonjumi, W. Kim, J. Park, J. Choe, D. Lee, Validation of spent nuclear fuel decay heat calculation by a two-step method, Nucl. Eng. Technol. (2021), https://doi.org/10.1016/j.net.2020.06.028.   DOI
16 J. Choe, S. Choi, P. Zhang, J. Park, W. Kim, H.C. Shin, H.S. Lee, J. Jung, D. Lee, Verification and validation of STREAM/RAST-K for PWR analysis, Nucl. Eng. Technol. 51 (2) (2019) 356-368.   DOI
17 B. Ebiwonjumi, S. Choi, M. Lemaire, D. Lee, H.C. Shin, H.S. Lee, Verification and validation of radiation source term capabilities in STREAM, Ann. Nucl. Energy 124 (2019) 80-87, https://doi.org/10.1016/j.anucene.2018.09.034.   DOI
18 A. Yamamoto, K. Kinoshita, T. Watanabe, T. Endo, Uncertainty quantification of LWR core characteristics using random sampling method, Nucl. Sci. Eng. 181 (2015) 160-174, https://doi.org/10.13182/NSE14-152.   DOI
19 Validation of SCALE 5 Decay Heat Prediction for LWR Spent Nuclear Fuel. U.S.: U.S. National Regulatory Commission, NUREG/CR-6972, 2010.
20 S. Choi, C. Lee, D. Lee, Resonance treatment using pin-based pointwise energy slowing-down method, J. Comput. Phys. 330 (2017) 134-155.   DOI
21 R.J.J. Stamm'ler, M.J. Abbate, Methods of Steady-State Reactor Physics in Nuclear Design, Academic Press, London, 1983.
22 R. Arcilla, et al., Processing neutron cross section covariances using NJOY-99 and PUFF-IV, Nucl. Data Sheets 109 (12) (2008) 2910-2914, https://doi.org/10.1016/j.nds.2008.11.033.   DOI
23 N. Garcia-Herranz, O. Cabellos, J. Sanz, J. Juan, J.C. Kuijper, Propagation of statistical and nuclear data uncertainties in Monte Carlo burn-up calculations, Ann. Nucl. Energy 35 (2008) 714-730, https://doi.org/10.1016/j.anucene.2010.06.006.   DOI
24 O. Leray, D. Rochman, P. Grimm, H. Ferroukhi, A. Vasiliev, M. Hursin, G. Perret, A. Pautz, Nuclear data uncertainty propagation on spent fuel nuclide compositions, Ann. Nucl. Energy 94 (2016) 603-611, https://doi.org/10.1016/j.anucene.2016.03.023.   DOI
25 D. Rochman, A. Vasiliev, H. Ferroukhi, T. Zhu, S.C. van der Marck, A.J. Koning, Nuclear data uncertainty for criticality-safety: Monte Carlo vs. linear perturbation, Ann. Nucl. Energy 92 (2016) 150-160, https://doi.org/10.1016/j.anucene.2016.01.042.   DOI
26 M.B. Chadwick, et al., ENDF/B-VII.1 nuclear data for science and technology: cross sections, covariances, fission product yields and decay data, Nucl. Data Sheets 112 (12) (2011) 2887-2996, https://doi.org/10.1016/j.nds.2011.11.002.   DOI
27 Ornl, SCALE: A Modular Code System for Performing Standardized Computer Analyses for Licensing Evaluations, ORNL/TM-2005/39, Version 6, vol. 4, 2009.