Browse > Article
http://dx.doi.org/10.1016/j.net.2021.02.010

Uncertainty quantification and propagation with probability boxes  

Duran-Vinuesa, L. (Universidad Politecnica de Madrid, Escuela Tecnica Superior de Ingenieros Industriales)
Cuervo, D. (Universidad Politecnica de Madrid, Escuela Tecnica Superior de Ingenieros Navales)
Publication Information
Nuclear Engineering and Technology / v.53, no.8, 2021 , pp. 2523-2533 More about this Journal
Abstract
In the last decade, the best estimate plus uncertainty methodologies in nuclear technology and nuclear power plant design have become a trending topic in the nuclear field. Since BEPU was allowed for licensing purposes by the most important regulator bodies, different uncertainty assessment methods have become popular, overall non-parametric methods. While non-parametric tolerance regions can be well stated and used in uncertainty quantification for licensing purposes, the propagation of the uncertainty through different codes (multi-scale, multiphysics) in cascade needs a better depiction of uncertainty than the one provided by the tolerance regions or a probability distribution. An alternative method based on the parametric or distributional probability boxes is used to perform uncertainty quantification and propagation regarding statistic uncertainty from one code to another. This method is sample-size independent and allows well-defined tolerance intervals for uncertainty quantification, manageable for uncertainty propagation. This work characterizes the distributional p-boxes behavior on uncertainty quantification and uncertainty propagation through nested random sampling.
Keywords
Uncertainty-quantification; Uncertainty-propagation; Probability-boxes; BEPU; Wilks;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Ferson, V. Kreinovick, L. Ginzburg, F. Sentz, Constructing Probability Boxes and Dempster-Shafer Structures, SNL Report, 2003, p. 809606, https://doi.org/10.2172/809606. SAND2002-4015.
2 USNRC, "10 CFR Part 50 - Domestic Licensing of Production and Utilization Facilities." .
3 Safety Assessment and Verification for Nuclear Power Plants: Safety Guide, IAEA, Vienna, 2001.
4 Regulatory Guide 1.157 (Task RS 701-4), Best-Estimate Calculations of Emergency Core Cooling System Performance.," p. 20.
5 B. Boyack, et al., Quantifying Reactor Safety Margins: Application of Code Scaling, Applicability, and Uncertainty Evaluation Methodology to a LargeBreak, Loss-Of-Coolant-Accident, NRC NUREG-Series Publications/CR-5249, 1989 iv.
6 F. D'Auria, C. Camargo, O. Mazzantini, The Best Estimate Plus Uncertainty (BEPU) approach in licensing of current nuclear reactors, Nucl. Eng. Des. 248 (2012) 317-328, https://doi.org/10.1016/j.nucengdes.2012.04.002.   DOI
7 N.R.C. US, Regulatory Guide 1.70, standard Format and content of safety analysis reports for nuclear power plants - LWR edition, Rev 3 (" Dec. 1978).
8 N.R.C. US, Regulatory Guide 1.203, Trans. Acc. Anal. Methods (2005) 53.
9 F. D'Auria, N. Debrecin, H. Glaeser, Strengthening nuclear reactor safety and analysis, Nucl. Eng. Des. 324 (Dec. 2017) 209-219, https://doi.org/10.1016/j.nucengdes.2017.09.008.   DOI
10 L.L. Briggs, Nuclear Engineering Division, "Uncertainty Quantification Approaches for Advanced Reactor Analyses, Argonne National Lab. (ANL), Argonne, IL (United States), 2009, https://doi.org/10.2172/956921.
11 F. D'Auria, O. Mazzantini, The best-estimate plus uncertainty (BEPU) challenge in the licensing of current generation of reactors, in: Proceedings Of an International Conference On Opportunities And Challenges For Water Cooled Reactors In the 21st Century, Vienna, Austria, 27-30 October 2009, Vienna, 2011, p. 13 [Online]. Available: http://www-pub.iaea.org/MTCD/Publications/PDF/P1500_CD_Web/htm/pdf/topic4/4S08_F.%20D. Auria.
12 R. Beran, P. Hall, Interpolated nonparametric prediction intervals and confidence intervals, J. Roy. Stat. Soc. B 55 (3) (1993) 643-652, https://doi.org/10.1111/j.2517-6161.1993.tb01929.x.   DOI
13 F. D'Auria, N. Debrecin, H. Glaeser, The technological challenge for current generation nuclear reactors, NUCET 5 (3) (Sep. 2019) 183-199, https://doi.org/10.3897/nucet.5.38117.   DOI
14 IAEA, Best Estimate Safety Analysis for Nuclear Power Plants: Uncertainty Evaluation, Internat Atomic Energy Agency, Vienna, 2008.
15 C. Frepoli, J.P. Yurko, R.H. Szilard, C.L. Smith, R. Youngblood, H. Zhang, 10 CFR 50.46c rulemaking: a novel approach in restating the LOCA problem for PWRs, Nucl. Technol. 196 (2) (Nov. 2016) 187-197, https://doi.org/10.13182/NT16-66.   DOI
16 J. Hou, et al., BENCHMARK FOR UNCERTAINTY ANALYSIS IN MODELLING (UAM) FOR DESIGN, OPERATION AND SAFETY ANALYSIS OF LWRs, in: Specification and Support Data for the Core Cases (Phase II), 3 Vols, vol. 2, OECD Nuclear Energy Agency, 2019.
17 X. Wu, T. Kozlowski, H. Meidani, K. Shirvan, Inverse uncertainty quantification using the modular Bayesian approach based on Gaussian process, Part 1: Theory, Nucl. Eng. Des. 335 (Aug. 2018) 339-355, https://doi.org/10.1016/j.nucengdes.2018.06.004.   DOI
18 E. Zio, F. Di Maio, Bootstrap and order statistics for quantifying thermalhydraulic code uncertainties in the estimation of safety margins, Sci. Technol. Nucl. Instal. 2008 (2008) 1-9, https://doi.org/10.1155/2008/340164.   DOI
19 Alan D. Hutson, Calculating nonparametric confidence intervals for quantiles using fractional order statistics, J. Appl. Stat. 26 (3) (1999) 343-353, https://doi.org/10.1080/02664769922458.   DOI
20 F. Sanchez-Saez, A. Sanchez, J. Villanueva, S. Carlos, S. Martorell, Uncertainty analysis of a large break loss of coolant accident in a pressurized water reactor using non-parametric methods 174, Reliability Engineering & System Safety, Jun. 2018, pp. 19-28, https://doi.org/10.1016/j.ress.2018.02.005.
21 I.S. Hong, A. Connolly, Generalized tolerance limit evaluation method to determine statistically meaningful minimum code simulations, in: Volume 4: Structural Integrity; Next Generation Systems; Safety And Security; Low Level Waste Management And Decommissioning; Near Term Deployment: Plant Designs, Licensing, Construction, Workforce and Public Acceptance, Orlando, Florida, USA, Jan, 2008, pp. 653-660, https://doi.org/10.1115/ICONE16-48448.
22 S. Wilks, Statistical prediction with special reference to the problem of tolerance limits, Ann. Math. Stat. 13 (4) (1945) 400-409, https://doi.org/10.1214/aoms/1177731537.   DOI
23 R. Schobi, B. Sudret, Propagation of uncertainties modelled by parametric P-boxes using sparse polynomial Chaos expansions, in: In 12th Int. Conf. On Applications Of Statistics And Probability In Civil Engineering (ICASP12), Canada, Vancouver, 2015, p. 9 [Online]. Available: https://hal.archives-ouvertes.fr/hal01247151.
24 S. Wilks, Determination of sample sizes for setting tolerance limits, Ann. Math. Stat. 12 (1) (1941) 91-96, https://doi.org/10.1214/aoms/1177731788.   DOI
25 D. Grabaskas, R. Denning, T. Aldemir, M. Nakayama, The use of Latin Hypercube sampling for the efficient estimation of confidence intervals, in: International Congress on Advances In Nuclear Power Plants 2012, ICAPP 2012 vol. 2, 2012.
26 Y. Pawitan, A reminder of the fallibility of the Wald statistic: likelihood explanation, Am. Statistician 54 (1) (2000) 54-56, https://doi.org/10.1080/00031305.2000.10474509.   DOI
27 C.E. Bonferroni, Teoria statistica delle classi e calcolo delle probabilita, 1936.
28 B. Efron, R. Tibshirani, Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy, Stat. Sci. 1 (1) (Feb. 1986) 54-75, https://doi.org/10.1214/ss/1177013815.   DOI
29 V. Voinov, N. Balakrishnan, M.S. Nikulin, Chi-squared Goodness of Fit Tests with Applications, Elsevier/AP, Amsterdam, 2013.
30 AndersoneDarling Test, in the Concise Encyclopedia Of Statistics, Springer New York, New York, NY, 2008, pp. 12-14.
31 C.F. Wu, M. Hamada, Experiments: Planning, Analysis, and Parameter Design Optimization, Wiley, New York, 2000.
32 R.F. Engle, Chapter 13 Wald, likelihood ratio, and Lagrange multiplier tests in econometrics, in: In Handbook Of Econometrics, vol. 2, 1984, pp. 775-826.
33 Kolmogorov-Smirnov Test, in the Concise Encyclopedia Of Statistics, Springer New York, New York, NY, 2008, pp. 283-287.
34 G.J. Hahn, W.Q. Meeker, L.A. Escobar, Statistical Intervals: A Guide for Practitioners and Researchers, John Wiley & Sons, 2017.
35 R. Mendizabal, Contribucion al estudio de las metodologias de calculo realista con incertidumbre (BEPU), dentro del analisis determinista de seguridad de plantas nucleares, " Universidad Politecnica de Madrid, Madrid, 2016.
36 US NRC, "Regulatory Guide 1.105, Set-points for safety related instrumentation. Rev. 3".
37 E. Zugazagoitia, C. Queral, K. Fernandez-Cosials, J. Gomez, L. Duran-Vinuesa, J. Sanchez-Torrijos, J.M. Posada, Uncertainty and sensitivity analysis of a PWR LOCA sequence using parametric and non-parametric methods, Reliab. Eng. Syst. Saf. 193 (2020), https://doi.org/10.1016/j.ress.2019.106607.   DOI
38 S. Bi, M. Broggi, P. Wei, M. Beer, The Bhattacharyya distance: enriching the Pbox in stochastic sensitivity analysis, Mech. Syst. Signal Process. 129 (Aug. 2019) 265-281, https://doi.org/10.1016/j.ymssp.2019.04.035.   DOI
39 L.L. Sharon, in: Sampling: Design and Analysis, second ed., Brooks/Cole, 2009.
40 C. Baudrit, D. Dubois, Practical representations of incomplete probabilistic knowledge, Comput. Stat. Data Anal. 51 (1) (Nov. 2006) 86-108, https://doi.org/10.1016/j.csda.2006.02.009.   DOI
41 S. Wilks, The large-sample distribution of the likelihood ratio for testing composite hypotheses, Ann. Math. Stat. 9 (1) (1938) 60-62, https://doi.org/10.1214/aoms/1177732360.   DOI
42 T.G. Bali, The generalized extreme value distribution, Econ. Lett. 79 (3) (Jun. 2003) 423-427, https://doi.org/10.1016/S0165-1765(03)00035-1.   DOI
43 M.H. Kutner (Ed.), Applied Linear Statistical Models, fifth ed., McGraw-Hill Irwin, Boston, 2005.