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ABSTRACT

The uncertainty quantification process in probabilistic Risk
Assessment usually involves a specification of the uncertainty in
the input data and the propagation of this uncertainty to the final
risk results. The distributional sensitivity analysis is to study
the impact of the wvarious assumptions made during the
quantification of input parameter uncertainties on the final output
uncertainty. The uncertainty importance of input parameters, in
this case, should reflect the degree of changes in the whole output
distribution and not just in a point estimate value. A measure of
the uncertainty importance is proposed in the present paper. The
measure is called the distributional sensitivity measure (DSM) and
explicitly derived from the definition of the Kullback's
discrimination information. The DSM is applied to three typical
cases of input distributional changes: 1) Uncertainty is completely
eliminated, 2) Uncertainty range is increased by a factor of 10,
and 3) Type of distribution is changed. For all three cases of
application, the DSM-based importance ranking agrees very well with
the observed changes of output distribution while other statistical
parameters are shown to be insensitive.

1. INTRODUCTION

In Probabilistic Risk Assessment (PRA), the uncertainties associated
with the traditional results (e.g., core melt frequency, and various health
risk indices) are as important as the point estimate values. The
uncertainty quantification process in PRA usually involves a specification
of the uncertainty in the input data and the propagation of this
uncertainty to the final risk results., It is also often the case that
subjective assessment is used to specify the uncertainties. Thus, it is
expected that the output distributions change depending on the different
assumptions made in the quantification of input uncertainties. The degree
of changes, on the other hand, may depend on the importance of each input
parameter.

A study analyzing the variation of output distribution can be called
the distributional sensitivity analysis in analogy to the traditional point
estimate sensitivity analysis. The importance of the input parameters, in
this case, should reflect the degree of changes in the whole output
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distribution and not just in a point estimate value, as there could be a
case where the shape of the output distribution is changed without much
changes in the uncertainty ranges or in the point estimate value.

The present paper proposes a measure for assessing the impact of
different assumptions used in the input uncertainty quantification on the
output uncertainties. The measure is called the distributional sensitivity
measure (DSM) and is derived from the definition of Kullback’s
discrimination information [1].

In Section 2, the distributional sensitivity analysis is briefly
introduced. In Section 3, the distributional sensitivity measure is
derived from Kullback's definition for a situation that the output
distribution 1is assumed to be a two-parameter Weibull distribution. This
measure is applied to a specific distributional sensitivity analysis and
the results are discussed in Section 4. Finally conclusions are given in
Section 5.

2. DISTRIBUTIONAL SENSITIVITY ANALYSIS

The distributional sensitivity analysis studies the impact on the
output distributions of different assumptions made during the
quantification of input parameter distributions. It is different from the
traditional sensitivity analysis where the quantity of interest is the
change in the point estimate value.

A typical example of point estimate sensitivity analysis is the
evaluation of the partial derivative of the output variable with respect to
one of the input variables [2). The distributional sensitivity analysis,
on the other hand, is defined 1in terms of the changes in the probability
density function (PDF) of the output variable. The changes in the output
PDF may be caused by various assumptions made during the input uncertainty
quantification. These assumptions include the types of input distributions
or the uncertainty ranges of input parameters. Moreover, for certain
physical phenomena with which the current understanding is very limited,
subjective judgment on the input uncertainty by various experts may be very
much different from each other and the aggregate distribution could become
multimodal. Since the choice of one distribution over the other may lead
to conflicting results, the distributional sensitivity analysis may, in
such cases, be useful for studying the impact of different choices.

Since the analytical propagation of input uncertainties is practically
impossible, the quantification of output PDF is usually performed through a
Monte Carlo type computer simulation. Within such a computer simulation
framework, the distributional sensitivity analysis can be performed through
the following steps:

Step 1. Quantification of an initial set of input distributions.
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Step 2. Propagation of input samples through the computer model
to estimate the output distribution.

Step 3. Requantification of input distributions.

Step 4. Repetition of Step 2 to estimate output distribution
based on the requantified input uncertainties.

Step 5. Repetition of Steps 3 and 4 for other input assumptions.

Step 6. Finally, analysis of all output distributions thus
obtained.

Steps 1 and 3 above involve selection of the measure of the
uncertainty and its quantification. The measure of the uncertainty in the
current paper is the probability density function (PDF). There are several
approaches to the PDF quantification. For example, if enough statistical
samples are available, either classical or Bayesian approach can be used to
estimate the PDF.  On the other hand, in case of rare events, the Bayesian
method with expert opinion as a prior might be the preferred approach.

The uncertainties of input variables or parameters quantified in the
previous step are propagated (Steps 2 and 4 above) through physical or
logical models utilized by the computer code. Various methods for the
propagation of input uncertainties are available and a partial 1list of
those methods includes: analytical method, discrete probability
distribution (DPD) method, moments method, and Monte Carlo method. One way
or another, these methods have their own advantages and disadvantages.

The analytical approach to the propagation of input uncertainties is
unlikely to find extensive use in any uncertainty studies due to its
analytical complexity. The use of DPD method in the propagation step needs
a considerable care in combining the distributions; otherwise, the number
of estimated points in the propagated distributions can become
unmanageable. The method using moments are limited to quantities that can
be expressed as relatively simple models (e.g., first order Taylor Series).
For complex propagation models like in the Level 2 or 3 PRA studies, this
method has the potential to become unmanageable too. Monte Carlo
techniques appear to offer effective ways to propagate distributions
through either physical or logical models provided the simulation costs do
not become excessive. Latin Hypercube Sampling (LHS) rather than
random sampling can be used as a possible way to improve the efficiency of
such propagation [3].

Typical outputs from these methods include estimated distribution
functions of outpul variables and corresponding statistical parameters.
However, these statistical characteristics of the output distributions
depend upon various assumptions made during the quantification of input
distributions. These assumptions may include the type of the input
distributions, estimated uncertainty ranges expressed in terms of
percentiles or error factors, and the subjective judgement on the current
understanding of various physical phenomena involved. Therefore, in order
to study the robustness of the conclusion based upon one assumption over
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the other, it is necessary to repeat the steps for the quantification of
input uncertainties and propagation of these uncertainties for different
assumptions (Step 5). Step 6 above involves definition of a proper measure
of distributional changes in the output variables and its calculation.

In general, the sensitivity measure can be defined as:

S=APDF(Y;, B} : X;, &)

In other words, the sensitivity measure S is defined as the perturbation of
type B on the PDF of output variable Yj due to the perturbation of @ on
the PDF of input variable Xi. The current paper proposes a collective
measure of various types of the output distributional perturbation. The
proposed collective measure estimates the closeness of one output PDF based
on one set of input distribution assumptions to the other, and then
compares the magnitude of this closeness to identify the importance of the
input assumption.

3. DISTRIBUTIONAL SENSITIVITY MEASURE

There are a number of possible measures for closeness between two
probability density functions. The present paper proposes to use, as a
measure of probabilistic distance, the Kullback-Leibler discriminator,
I(1:2). Given two probability distributions, f1(x) and f2(x), [(1:2) is
defined as [1]:

f1(x)
I(1:2)=j‘f1(x)ln[f;(~;)- dx

I(1:2) can be interpreted as the mean information for discrimination
in favor of one hypothesis against the other. 1In other words, I(1:2) is
the expected difference 1in the information conveyed by two distributions
f1(x) and f2(x). Assuming that fl(x) is an output distribution based on
the initial set of input distributions reflecting one analyst’s state of
knowledge, f2(x) may be another output distribution from some other part of
the spectrum of analyst. The magnitude of I(1:2) is then an index of the
robustness of conclusions based on fl(x) against any changes in the
assessment of the state of knowledge reflected in the other output
distribution f2(x).

The approach taken by the current paper for the calculation of Eq.(2)
is the use of two analytical output PDFs derived by approximation of the
simulated distributions through a least-squares curve fitting. The output
distributions uswally cover a wide range of parameter space and may have a
variety of distributional shapes. Thus, a suitable choice of analytical
distribution to fit the simulated output distributions must be flexible and
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versatile. The two-parameter Weibull distribution satisfies these
requirements and can be completely quantified by specifying the shape
factor and the scale factor. These two parameters are defined in the
cumulative Weibull distribution as follows:

B
F()=1-EXP[-(}) ]

Where is the Weibull scacle factor, and B the Weibull shape factor.
With the assumption of Weibull distribution, Kullback’s definition of

the discrimination information can be analytically integrated to give the

measure of distributional sensitivity proposed in the current paper:

DSM(o:i)=-1+}n(Bf’)+(gi—~1)C

o)+ e P

1 1 o

Where C is a constant equal to 0.577216, and the subscript o refers to the
base case and i to the sensitivity case in which i-th input distribution is
changed. (x) denotes a gamma function.

Figure 1 shows the variation of the distributional sensitivity measure
(DSM) due to the variations of two ratios, and Bi/Bo. If both
ratios approach unity, the two distributions become identical and DSM goes
to zero. When each ratio moves away from 1, DSM becomes larger. A large
DSM thus reflects the situation that two distributions are different in
their respective shapes as well as in their ranges of variation.

4. APPLICATIONS

In the previous section, the DSM has been derived explicitly for the
Weibull distributions. The DSM is a collective measure of the changes of
the output distributions introduced by a distributional change in the input
parameter,  Applicalions are made for three typical cases of input
distributional changes. For each selected input parameter;

Case 1 : Uncertainty is completely eliminated.
Case 2 : Uncertainty range is increased by a factor of 10.
Case 3 : Type of distribution is changed.

The first two cases are analogous to the risk reduction and risk
increase measures in the point estimate importance analysis introduced by
Vesely [2]. In Case 1, a complete knowledge of the particular input
parameter 1is assumed by replacing the probability distribution with its
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nominal value. Case 2 reflects the other extreme case where not much is
known about the input, hence a wide distribution is assigned. In Case 3,
‘the impact of the changes in the input distribution type is studied. For
each of the above three cases, a distributional sensitivity analysis is
performed. The DSM is then calculated and input parameters are ranked
accordingly. A personal computer-based fast running code, SMART, is
selected for the present applications [4]. SMART is a simplified nuclear
accident consequence calculation code. It was benchmarked against more
sophisticated codes and showed excellent agreement. Total of 21 input
variables are selected among which 13 variables are source term parameters
and the remainder consequence parameters. The base case input distribution
types and ranges are shown in Table 1 along with a brief description of
each input variable. The lower and upper bounds of each range are
calculated by dividing or multiplying the nominal value by a factor of 3,
respectively.

The output variable under study is the probability of one person being
killed at the 2 miles from the nuclear power plant, should an accident
occur with the specified source term characteristics (input variables 1
through 13) and weather and site-specific conditions (input variables 14
through 21).

The Latin Hypercube Sampling (LHS) Code is used for estimating output
distributions. The number of samples is 1000. The output distributions
are fitted to the two-parameter Weibull distribution. The distributional
sensitivity measures(DSMs) are calculated using Eq.(4) and the uncertainty
importance of each input parameler is ranked accordingly. The results are
discussed in more detail in the following paragraphs.

Case 1: Zero Input Uncertainty

This case 1is in analogy to the risk reduction measure introduced by
Vesely. For each input, the uncertainty is assumed to be zerc and the
input value remains at the nominal value throughout the calculations. The
DSM for the =zero input uncertainty is different from the risk reduction
measure.  While the latter assumes zero point estimate valne, the former
assumes zero uncertainty and not zero point estimate value. Instead, it
takes the nominal value.

The calculated DSM for each sensitivity case is the probabilistic
distance between the base case and the changed output distribution under
the no uncertainty assumption in the input variable. A larger DSM means
longer probabilistic distance and the change in the output distribution is
greater. Therefore, the input variahle which has the largest DSM is the
most important in terms of its impact on the output distribution.

The DSM results are compared with other statistical parameter
variations. Table 2 shows the changes in the output statistical parameters
when each input uncertainty is assumed to be zero one at a time. Also
shown in Table 2 is the variation of the error factors. The error factor
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is defined as the square root of the ratio between the 95th percentile and
the 5th percentile. Figure 2 shows graphically an example of the changes
of cumulative output distributions: One from the source term parameter
group(input variable #3), and the other from the consequence parameter
group (input variable #20). The selection of most important input
variables by DSM agrees well with our engineering intuition and the degree
of changes in output distributions shown, for example, in Figure 2.
Variations of DSM along with other possible measures, such as the 5th,
50th, and 95th percentiles, are shown in Figure 3. In Figure 3, the
importance of each input parameter is shown in such a way that the
calculated DSMs are in the descending order. For example, the input
parameter, #20 has the largest calculated DSM value, and therefore, is
ranked 1. #14 has the second largest DSM and ranked 2, and so on. The
other possible measures such as the percentiles in Figure 3 do not appear
to be as sensitive as the DSM, even in such cases where major portions of
output distribution have changed, as shown in Figure 2.

Case 2: Increased Input Uncertainty

In this case, each input’s base case uncertainty range is increased by
a factor of 10, or a factor of 3.3 for the lower and upper bounds,
respectively. This case corresponds to a situation where not much is known
about the particular input parameter and thus very wide uncertainty range
is assumed. This is analogous to the risk increase measure by Vesely. The
difference is that, in this case, a complete ignorance is assumed rather
than complete failure of system or component. The uncertainty importance
of each input parameter is shown in Figure 4 in a similar fashion as in
Figure 3 for the zero uncertainty importance. A tabular form summary is
given in Table 3. Selection of the most important input variables on the
basis of the DSM shows similar results obtained in Case 1 and confirms the
validity and usefulness of DSM.

Case 3: Changed Input Distribution Type

Initially it is assumed that all input variables follow uniform
distribution. By assuming uniform distribution, the whole range of
uncertainty is made sure to be sampled with equal probability. Each input
distribution type is, 1in Case 3, changed to the normal distribution one at
a time and its impact on the output distribution is analyzed. The changes
in the statistical parameters and DSM are shown in Table 4. Figure 5
displays the ranks of input parameters for this case. A similar set of
input variables is identified to be important.

5. CONCLUSIONS

The distributional sensitivity analysis is briefly described. The
uncertainty importance measure based on the information theory is derived
explicitly for the case that the simulated output distributions are
approximated by the two-parameter Weibull distribution. FEach input
variable’s importance on the output uncertainty is ranked according to the
values of uncertainty importance measure (DSM) for the following three
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cases: (1) Complete knowledge is assumed, (2) Complete ignorance is
assumed, and (3) Different distributional type is assumed. For all three
cases, the DSM-based ranking agrees very well with the observed changes of
output distributions while other statistical parameters are shown to be
insensitive.

The proposed distributional sensitivity measure (DSM) can be used as a
tool for exploring the sensitivity of a risk profile to certain changes
including the effect of incorporating beliefs from some other part of the
spectrum of analysts. It is an indicator of the robustness of conclusions
based on the overall probability densities against changes in the
assessment of the state of knowledge reflected in the output distribution.
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