Browse > Article
http://dx.doi.org/10.1016/j.net.2021.09.010

A methodology for uncertainty quantification and sensitivity analysis for responses subject to Monte Carlo uncertainty with application to fuel plate characteristics in the ATRC  

Price, Dean (Idaho National Laboratory)
Maile, Andrew (Idaho National Laboratory)
Peterson-Droogh, Joshua (Idaho National Laboratory)
Blight, Derreck (Idaho National Laboratory)
Publication Information
Nuclear Engineering and Technology / v.54, no.3, 2022 , pp. 790-802 More about this Journal
Abstract
Large-scale reactor simulation often requires the use of Monte Carlo calculation techniques to estimate important reactor parameters. One drawback of these Monte Carlo calculation techniques is they inevitably result in some uncertainty in calculated quantities. The present study includes parametric uncertainty quantification (UQ) and sensitivity analysis (SA) on the Advanced Test Reactor Critical (ATRC) facility housed at Idaho National Laboratory (INL) and addresses some complications due to Monte Carlo uncertainty when performing these analyses. This approach for UQ/SA includes consideration of Monte Carlo code uncertainty in computed sensitivities, consideration of uncertainty from directly measured parameters and a comparison of results obtained from brute-force Monte Carlo UQ versus UQ obtained from a surrogate model. These methodologies are applied to the uncertainty and sensitivity of keff for two sets of uncertain parameters involving fuel plate geometry and fuel plate composition. Results indicate that the less computationally-expensive method for uncertainty quantification involving a linear surrogate model provides accurate estimations for keff uncertainty and the Monte Carlo uncertainty in calculated keff values can have a large effect on computed linear model parameters for parameters with low influence on keff.
Keywords
Advanced test reactor critical; Advanced test reactor; ATRC; Uncertainty quantification; Criticality; Sensitivity analysis; Monte Carlo;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Cramer, Mathematical Methods of Statistics, vol. 43, Princeton university press, 1999.
2 J.C. Helton, J.D. Johnson, C.J. Sallaberry, C.B. Storlie, Survey of sampling-based methods for uncertainty and sensitivity analysis, Reliab. Eng. Syst. Saf. 91 (10-11) (2006) 1175-1209.   DOI
3 M.B. Chadwick, M. Herman, P. Oblozinsky, M.E. Dunn, Y. Danon, A. Kahler, D.L. Smith, B. Pritychenko, G. Arbanas, R. Arcilla, et al., ENDF/B-VII. 1 nuclear data for science and technology: cross sections, covariances, fission product yields and decay data, Nucl. Data Sheets 112 (12) (2011) 2887-2996.   DOI
4 J. Meija, T.B. Coplen, M. Berglund, W.A. Brand, P. De Bievre, M. Groning, N.E. Holden, J. Irrgeher, R.D. Loss, T. Walczyk, et al., Atomic weights of the elements 2013 (IUPAC technical report), Pure Appl. Chem. 88 (3) (2016) 265-291.   DOI
5 J.B. Briggs, L. Scott, A. Nouri, The international criticality safety benchmark evaluation project, Nucl. Sci. Eng. 145 (1) (2003) 1-10.   DOI
6 N.K.M. Faber, Uncertainty estimation for multivariate regression coefficients, Chemometr. Intell. Lab. Syst. 64 (2) (2002) 169-179.   DOI
7 D. Hamby, A comparison of sensitivity analysis techniques, Health Phys. 68 (2) (1995) 195-204.   DOI
8 D. Price, M.I. Radaideh, D. O'Grady, T. Kozlowski, Advanced BWR criticality safety part II: cask criticality, burnup credit, sensitivity, and uncertainty analyses, Prog. Nucl. Energy 115 (2019) 126-139.   DOI
9 R. Vallat, Pingouin: statistics in Python, J. Open Source Software 3 (31) (2018) 1026.   DOI
10 B.T. Rearden, M.L. Williams, M.A. Jessee, D.E. Mueller, D.A. Wiarda, Sensitivity and uncertainty analysis capabilities and data in SCALE, Nucl. Technol. 174 (2) (2011) 236-288.   DOI
11 M.I. Radaideh, M.I. Radaideh, Efficient analysis of parametric sensitivity and uncertainty of fuel cell models with application to SOFC, Int. J. Energy Res. 44 (4) (2020) 2517-2534.   DOI
12 T. Sutton, T. Donovan, T. Trumbull, P. Dobreff, E. Caro, D. Griesheimer, L. Tyburski, D. Carpenter, H. Joo, The MC21 Monte Carlo Transport Code, Tech. Rep, Knolls Atomic Power Laboratory (KAPL), Niskayuna, NY, 2007.
13 S. Kim, B. Schnitzler, Advanced Test Reactor: Serpentine Arrangement of Highly Enriched Water-Moderated Uranium-Aluminide Fuel Plates Reflected by Beryllium, Tech. Rep. HEU-MET-THERM-022, Idaho National Laboratory, 2005.
14 M.I. Radaideh, D. Price, D. O'Grady, T. Kozlowski, Advanced BWR criticality safety part I: model development, model benchmarking, and depletion with uncertainty analysis, Prog. Nucl. Energy 113 (2019) 230-246.   DOI
15 H. Janssen, Monte-Carlo based uncertainty analysis: sampling efficiency and sampling convergence, Reliab. Eng. Syst. Saf. 109 (2013) 123-132.   DOI
16 G. Ilas, H. Liljenfeldt, Decay heat uncertainty for BWR used fuel due to modeling and nuclear data uncertainties, Nucl. Eng. Des. 319 (2017) 176-184.   DOI
17 R.J. McConn, C.J. Gesh, R.T. Pagh, R.A. Rucker, R. Williams III, Compendium of Material Composition Data for Radiation Transport Modeling, Tech. Rep, Pacific Northwest National Lab.(PNNL), Richland, WA (United States), 2011.
18 R.C. Smith, Uncertainty Quantification: Theory, Implementation, and Applications, vol. 12, Siam, 2013.
19 A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana, S. Tarantola, Global Sensitivity Analysis: the Primer, John Wiley & Sons, 2008.
20 M.I. Radaideh, T. Kozlowski, Combining simulations and data with deep learning and uncertainty quantification for advanced energy modeling, Int. J. Energy Res. 43 (14) (2019) 7866-7890.   DOI
21 D. Rochman, S. van der Marck, A. Koning, H. Sjostrand, W. Zwermann, Uncertainty propagation with fast Monte Carlo techniques, Nucl. Data Sheets 118 (2014) 367-369.   DOI