• 제목/요약/키워드: Uncertain Dynamic Systems

검색결과 137건 처리시간 0.027초

불확실성의 Fredholm 적분 수식화를 통한 적응가변구조제어기 설계 (Design of an Adaptive Variable Structure Control using Fredholm Integral Formulae for the Uncertainties)

  • 유동상
    • 제어로봇시스템학회논문지
    • /
    • 제9권9호
    • /
    • pp.658-663
    • /
    • 2003
  • In deterministic design of feedback controllers for uncertain dynamic systems, the upper bound of the uncertainty is very important to guarantee the stability of the closed loop system. In this paper, we assume that the upper bound of the uncertainty is formulated using a Fredholm integral equation of the first kind, that is, an integral of the product of a predefined kernel with an unknown influence function. We propose an adaptation law that is capable of estimating this upper bound. Using this adaptive upper bound, we design an adaptive variable structure control (AVSC), which guarantees asymptotic stability/ultimate boundedness of uncertain dynamic systems. The illustrative example shows the proposed AVSC is effective for uncertain dynamic systems.

시변 지연이 존재하는 불확실 동적 시스템의 지연 의존 강인 안정성 (Delay-dependent Robust Stability of Uncertain Dynamic Systems with Time-varying Delays)

  • 권오민;박주현
    • 전기학회논문지
    • /
    • 제58권1호
    • /
    • pp.181-186
    • /
    • 2009
  • In this paper, the stability analysis for uncertain dynamic systems with time-varying delays is considered. By constructing a new Lyapunov functional, a novel stability criterion is established in terms of linear matrix inequalities (LMIs). Two numerical examples are carried out to support the effectiveness of the proposed method.

Design of robust gain scheduling controllers in uncertain nonlinear systems

  • Lee, Seon-Ho;Lim, Jong-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 Proceedings of the Korea Automatic Control Conference, 11th (KACC); Pohang, Korea; 24-26 Oct. 1996
    • /
    • pp.231-234
    • /
    • 1996
  • This paper considers the output regulation problems on uncertain systems. Using NR-estimator(on-line), a family of equilibrium points for the uncertain system is computed. The state variables of the closed loop system track the average value of the obtained equilibrium manifold by dynamic state feedback control.

  • PDF

Output-Feedback Control of Uncertain Nonlinear Systems Using Adaptive Fuzzy Observer with Minimal Dynamic Order

  • Park, Jang-Hyun;Huh, Sung-Hoe;Park, Gwi-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.39.2-39
    • /
    • 2001
  • This paper describes the design of an output-feedback controller based on an adaptive fuzzy observer for uncertain single-input single-output nonlinear dynamical systems. Especially, we have focused on the realization of minimal dynamic order of the adaptive fuzzy observer. For the purpose, we propose a new method in which no strictly positive real(SPR) condition is needed and combine dynamic rule activation scheme with on-line estimation of fuzzy parameters. By using proposed scheme, we can reduce computation time, storage space, and dynamic order of the adaptive fuzzy observer ...

  • PDF

An Estimation Approach to Robust Adaptive Control of Uncertain Nonlinear Systems with Dynamic Uncertainties

  • Ahn, Choon-Ki;Kim, Beom-Soo;Lim, Myo-Taeg
    • International Journal of Control, Automation, and Systems
    • /
    • 제1권1호
    • /
    • pp.54-67
    • /
    • 2003
  • In this paper, a novel estimation technique for a robust adaptive control scheme is presented for a class of uncertain nonlinear systems with a general set of uncertainty. For a class of introduced more extended semi-strict feedback forms which generalize the systems studied in recent years, a novel estimation technique is proposed to estimate the states of the fully nonlinear unmodeled dynamics without stringent conditions. With the introduction of powerful functions, the estimation error can be tuned to a desired small region around the origin via the estimator parameters. In addition, with some effective functions, a modified adaptive backstepping for dynamic uncertainties is presented to drive the output to an arbitrarily small region around the origin by an appropriate choice of the design parameters. With our proposed schemes, we can remove or relax the assumptions of the existing results.

정합조건을 만족하지 않는 불확정 비선형 시스템의 강인 안정화 (Robust stabilization of nonlinear uncertain systems without matching conditions)

  • 주진만;최윤호;박진배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.159-162
    • /
    • 1997
  • This paper describes robust stabilization of nonlinear single-input uncertain systems without matching conditions. We consider nonlinear systems with a vector of unknown constant parameters perturbed about a known value. The approach utilizes the generalized controller canonical form to lump the unmatched uncertainties recursively into the matched ones. This can be achieved via nonlinear coordinate transformations which depend not only on the states of the nonlinear system but also on the control input. Then the dynamic robust control law is derived and the stability result is also presented.

  • PDF

Implementation issues for Uncertain Relational Databases

  • Yu, Hairong;Ramer, Arthur
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.128-133
    • /
    • 1998
  • This paper aims to present some ideas for implementation of Uncertain Relational Databases (URD) which are extensions of classical relational databases. Our system firstly is based on possibility distribution and probability theory to represent and manipulate fuzzy and probabilistic information, secondly adopts flexible mechanisms that allow the management of uncertain data through the resources provided by both available relational database management systems and front-end interfaces, and lastly chooses dynamic SQL to enhance versatility and adjustability of systems.

  • PDF

Multiperiod Mean Absolute Deviation Uncertain Portfolio Selection

  • Zhang, Peng
    • Industrial Engineering and Management Systems
    • /
    • 제15권1호
    • /
    • pp.63-76
    • /
    • 2016
  • Multiperiod portfolio selection problem attracts more and more attentions because it is in accordance with the practical investment decision-making problem. However, the existing literature on this field is almost undertaken by regarding security returns as random variables in the framework of probability theory. Different from these works, we assume that security returns are uncertain variables which may be given by the experts, and take absolute deviation as a risk measure in the framework of uncertainty theory. In this paper, a new multiperiod mean absolute deviation uncertain portfolio selection models is presented by taking transaction costs, borrowing constraints and threshold constraints into account, which an optimal investment policy can be generated to help investors not only achieve an optimal return, but also have a good risk control. Threshold constraints limit the amount of capital to be invested in each stock and prevent very small investments in any stock. Based on uncertain theories, the model is converted to a dynamic optimization problem. Because of the transaction costs, the model is a dynamic optimization problem with path dependence. To solve the new model in general cases, the forward dynamic programming method is presented. In addition, a numerical example is also presented to illustrate the modeling idea and the effectiveness of the designed algorithm.

Fredholm 적분식을 이용하여 불확실성의 경계치를 추정하는 적응강인제어기 설계 (Design of a Continuous Adaptive Robust Control Estimating the Upper Bound of the Uncertainties using Fredholm Integral Formulae)

  • 유동상
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권4호
    • /
    • pp.207-211
    • /
    • 2004
  • We consider a class of uncertain nonlinear systems containing the uncertainties without a priori information except that they are bounded. For such systems, we assume that the upper bound of the uncertainties is represented as a Fredholm integral equation of the first kind and we propose an adaptation law that is capable of estimating the upper bound. Using this adaptive upper bound, a continuous robust control which renders uncertain nonlinear systems uniformly ultimately bounded is designed.

불확실성을 갖는 비선형 시스템의 적응 제어기 설계 (Design of Adaptive Regulator for a Nonlinear Uncertain System)

  • 진주화;유경탁;손영익;서진헌
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권2호
    • /
    • pp.153-158
    • /
    • 1999
  • We consider single-input nonlinear systems with unknown unmodelled time-varying parameters or disturbances which are bounded. The main goal is to identify classes of uncertain systems for which the control exist and to provide constructive design procedures. Assuming that the undisturbed nominal system ( ,g) is partially state feedback linearizable, that a strict triangularity condition, a linear parametrization condition, and {{{{ { G}_{r-1 } }}}} hold for the uncertain terms, and that some condition is satisfied in the transformed partially linear system, we design an adaptive regulating dynamic control. At first, we identify classes of nonlinear uncertain systems and give a systematic procedure for the design of a robust regulation for the nonlinear systems.

  • PDF