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This paper considers the output regulation problems on uncertain systems. Using NR-

estimator(on-line), a family of equilibrium points for the uncertain system is computed. The state
variables of the closed loop system track the average value of the obtained equilibrium manifold by

dynamic state feedback control.
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1. INTRODUCTION

Recently there has been considerable progress in the
theory of gain scheduling|1] [2] [3] [4] [5]. First, the
control law for the systems with slowly varying param-
eters has been developed. Huang and Rugh considered
nonlinear systems with both measured and unmeasured
disturbance signals, and proposed output feedback con-
trol law for reference tracking problem{1]. Analytical
framework for the state feedback control law was also
proposed for regulation problem[2]. Moreover, state
feedback control laws with the derivative information
on the scheduling variables are proposed for somewhat
fast time varying inputs[6] [7]. However, these de-
veloped control schemes are restricted to the exactly
known plant dynamics. [8] and [9] proposed a dynamic
state feedback controller using internal model principle.
They tried to achieve asymptotic tracking and distur-
bance rejection for uncertain nonlinear systems.

In this paper, NR-estimator computes a family of
equilibrium points(equilibrium manifold) for an uncer-
tain system with information about the system uncer-
tainties on line. Moreover, a dynamic static feedback
controller is proposed so that the state variables asymp-
totically track the average of the equilibrium mani-
fold with certain error bound. Owing to the output
feedback compensator, some of the average equilibrium
manifold are continuously adjusted to reduce the out-
put error and the resulting overall system reveals robust
property for the uncertainties.

2. PROBLEM DESCRIPTION

We note that for given a € R™ and A € R**™, (a);
denotes the ith element of a and (A);; the (i, j)th ele-
ment of A.

We consider the following uncertain system

flz,w) + Af(x,w) + (G(z,w) + AG(z,w))u
(1)

&

¥

h(z,u,w), £(0) = z,, t >0

where z € R™ is the state vector, w € R™ is the exoge-

" nous signal, u € RP is the control input, and y € RP
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is the output. The uncertainties Af and AG are un-
known and bounded. The functions f : R* x R™ — R",
G:R*XR™ — R*™ and h: R®" x R™ x RP — RP
are assumed to be continuously differentiable. The con-
trol objective is to minimize ¢ while rejecting the plant
uncertainties such that

Jim firg — o] < ¢ (2)
where r4y € RP is the constant reference input.

Assumption I There exists an open neighborhood
I' € R™ of the origin and a smooth function
(x0(w),up(w)) for w € T such that

0 f(xﬂ(w)s w) + G(Xo(w), U))UO(U)) (3)
rq h(xo(w), up(w), w)

Assumption 2 There exist finite functions a(w,t),
a(w,t), B(w,t), and F(w,t) such that for 1 < i < n
and1<j<p,

ao(w,t) < |(Af)i| <a(w,t)

B(w,t) < [(AG)y| < Blw,0), wel<o Y
For notational convenience, we let
Flz,u,w, Af, AG) =

flz,w) + Af(z,w)+ (G(z,w)+ AG(z, w))u
Assumption 3 There exists
(x(w),a(w)) for w € I such that

a smooth function

0 = F(x(w),u(w),w,Af(x(w), a(w)),
AG(x(w), (w))) (6)
rqg = h(x(w),a(w),w)

and X(w) = xp(w) and a(w) = ug(w) if Af = AG=0.

Here, we notice that the solution in (3) is not unique,
and nonzero A f and AG displace the obtained (xg, ug)
to unknown (x, ).

Define
® = {6€R(@)isaordl<i<n)
© = {0€R**P|(9); isBorB,1<i<nm, (7)

1<j<p}



If we consider (x,u) near (x,u), ie., [x7,a”}7
[(x + Ax)T,(u + Aw)T)T with sufficiently small
[AxT, AuT]T, then applying Newton-Raphson method
we find an approximate increment [dx”,du”]T such
that

F(x,u,w,Af AG)
hix,u,w,Af,AG) —r4

AF(X,u,w,Af,AG) AP(Xu,w,Af AG) dx
3 [} —
Bhgx,zl..l,w! 6h!X,1{1,w! [ du ] =0
Jox du

with an assumption that the jacoblan matrix is in-
vertible. Here, we propose a iterative law to obtain
[x7,a7)T such that
Xk 41 _ X + dx;
Ugy1 - u + dug

(9)

d Fu()=Fuoa () Fe()=Fen () 77
Xk - _ Xp—Xi-1 Uy —Ui-,
[ duy ] - I: "k)((‘)—’;(k—l(') hkl(l')—:t;—l(') ]
Fi ()
1
where Fi(-) F(xg,ug, w,Af,AG) and hi(")

h(xk, ug, w) with the initial value [xoT,uT]7 from as-
sumption 1. However, we can’t compute the equilib-
rium point (x,u) due to the unknown Af and AG.
Thus, using assumption 2, we obtain approximately
estimated equilibrium point (X, u;) shown in Fig 1.
First, we regard all the solutions of (10) with Af = ¢ €
® and AG = 6 € © as equilibrium manifold {xx,uz}
with assumption of the existence of the finite solution
Xk, uy for slowly varying w(t). We denote the aver-
age value of {xy,u} as the average equilibrium point
(Xk, ). This scheme is executed by NR-estimator at
every step k. Overall system is depicted in Fig. 2.

Letting ¢ = r — x, then |le|]| < ||z — X&|| + || — X||-
Here, ||z — Xx|| is determined by the performance of the
state feedback controller and ||X; — X|| by the output
of NR-estimator with the estimated bound ¢, @, 3, and

B.
Theorem 1 There exists d(t) such that
lIxe — || < d(t)/2 (11)
Proof: Suppose that for ¢ € ¢ and d € O, w € T,
NR-estimator gives solution (xi, ug) around (X, i) such
that
0

rd

F(xkﬂuk7w5¢ve)
h(xk,uk,w)

(12)

when the initial value (xo(w), ug(w)).
Then, from Fig. 1-(a) we obtain

= [E%&zz’;@(*

The control law which guarantees the control objec-
tive 1s given by

_ 1/2

min (xg); } ] (13)

¢€d.e@

k(z,z)

(z,y) (14)

zZ =

(8)
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Fig. 1: Trajectory of the average equilibrium manifold
(Xg, Q) in uncertain system

% =Flx,uw)
y = hix,u,w)

¥y

n
u[ :|x, |
(% ;)

| NR-Estimator l

Fig. 2: Block diagram of the overall feedback system

u = kiz,x)
z=lz,y)

where z € R?. The corresponding linearized closed loop
system is written in the form

A(w Af,AG)zs + B(w Af, AG)us;
+E(w Af, AG)ws

C’(w)xa + E(w)ua + ﬁ’(w)wé
Ki(w)z + Ko(w)zs

Li(w)z + La(w)ys

Here, the derivative variables are defined as z5 =
r — Xp(w), ws w — W, us u — g(w),
and y; Yy — rq. The linearizgd-system co-
efficients by A(w,Af,AG) aF(x"’u"é:v’Af’AG),
B(w,Af, AG) = aF(ik,ﬁkézv,Af,AG)’
E‘(w,Af,AG) BF(xk,uka,:)V,Af,AG)y C‘(w)
ahgig:}k»wz’ D(w) ahgik,flk,WQ, and F~‘(w)

.0z Ju
Oh(X, Wk, W
dw

s

1l

Ys (15)
Us

z

mnn

and the linearized control law coefficients
Ki(w), Ko(w), L1(w), and Ls(w) design factors. In
order to obtain the desired pole-placement in the lin-
earized closed loop system

[ 4(0,0,0) 0 ] [ B(0,0,0) ]

L2(0)C(0)  L1(0) | 7 | L2(0)D(0)
should be controllable pair. Moreover,
A+ BK, BK,
[ L2(C + DK3) Ly + Ly DK, J

should be Hurwitz.

(16)

(17)

Theorem 2 Suppose (16) is controllable pair and the
eigenvalues of (17) have real parts less than A < 0 when
Af = AG = 0. Then, given positive constants p and
T there exist positive constants €(p), €1, €2, 61(p), and

82(p, T) for which following properties hold. If for a
continuously differentiable w(t) € I',t > 0
lAfl < e, |AG] < e
HJC;O) - Xk (w(0))|l < 8 (18)
L[ io)||do < &2, t>0
then
ll=(t) — i (w(t))l| < p (19)



and

(20)

The proof is directly derived from [10]. Finally, we
obtain

Jim fIra — gl] < <(p)
— 00

U =

iy + K1 (w)z + Ka(w)(z — Xx)

. 21
2 = Li(w)z+ La(w)(y — 7a) 1)
Letting @}, = ux + Ki(w)z, then
u = 1.1;c -+ [&’z(w)(l‘ - ik) (22)

We notice that (22) is the typical state feedback con-
troller form in gain scheduling(2]. The equilibrium
point is changed from (Xg,0z) to (Xg,0;). In other
words, @1 is modified into 11} so as to reduce output
error.

Example: Consider the Boost type DC to DC con-
verter shown in Fig. 3. Under the assumption of fast

L
0
7 )4
Fig. 3: Boost type DC to DC Converter

switching, we define an average model by formally re-
placing the discontinuous control function u, by con-

tinuous smooth function u.
. 1 E(w)+AE(w) 1,
—rr2+ T + pr2u

+

Ew) + AEw

1 =

; 1 1 1

ry = z:l‘l - ﬁl’g - EIIIIU (23)
y = Iz

where £; = I, 2 = V, and the coefficients are defined
as R = 30[Q], C = 20[u¥], L = 20[mH], E(w) = 15+
w[V], and w = sin(10t). Here, AE(= 0.5w” + 3) is un-
known voltage source structure. The control objective
is to obtain regulated V = 30[V]. The nominal equi-

librium point is xo(w) = ['E'(%%,rd]T,uo =1= %l

Simulation is performed under Af; = 22) o = 2

and @ = 2. Fig 4. shows the output trajectory when
only static state feedback controller(u = k(0, z)) is em-
ployed and Fig 5. when the dynamic state feedback
controller(u k(z,z),2 = I(z,y)) is employed. In
Fig. 4-(d) shows some output error due to the nonzero
d(t),t > 0. Fig. 5-(c) shows that @ has tendency to
approach into 11 and Fig. 5-(d) shows well regulated
output voltage.

3. CONCLUSIONS

In this paper, we proposed a dynamic state feedback
controller which enables the state variables to asymp-
totically track the estimated equilibrium point obtained
by NR-estimator. The overall system shows robust-
ness for the uncertainties. The NR-estimator makes
fast computation of equilibrium point and it can be
applied to existing controllers which utilize equilibrium
point for given system. In addition, more precise bound
about uncertainty provides better regulation perfor-
mance.
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Fig. 4:
k(0,z)

Output when with no compensator : u = Fig. Output when with compensator : u

k(z,z), 2 =1(z,y)
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