• Title/Summary/Keyword: Ultraviolet Absorption Spectroscopy

Search Result 55, Processing Time 0.029 seconds

Structural and Optical Properties of SnS Thin Films Deposited by RF Magnetron Sputtering (RF 마그네트론 스퍼터링법으로 제조한 SnS 박막의 구조적 및 광학적 특성)

  • Hwang, Donghyun
    • Journal of Surface Science and Engineering
    • /
    • v.51 no.2
    • /
    • pp.126-132
    • /
    • 2018
  • SnS thin films with different substrate temperatures ($150 {\sim}300^{\circ}C$) as process parameters were grown on soda-lime glass substrates by RF magnetron sputtering. The effects of substrate temperature on the structural and optical properties of SnS thin films were investigated by X-ray diffraction (XRD), Raman spectroscopy (Raman), field-emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS), and Ultraviolet-visible-near infrared spectrophotometer (UV-Vis-NIR). All of the SnS thin films prepared at various substrate temperatures were polycrystalline orthorhombic structures with (111) planes preferentially oriented. The diffraction intensity of the (111) plane and the crystallite size were improved with increasing substrate temperature. The three major peaks (189, 222, $289cm^{-1}$) identified in Raman were exactly the same as the Raman spectra of monocrystalline SnS. From the XRD and Raman results, it was confirmed that all of the SnS thin films were formed into a single SnS phase without impurity phases such as $SnS_2$ and $Sn_2S_3$. In the optical transmittance spectrum, the critical wavelength of the absorption edge shifted to the long wavelength region as the substrate temperature increased. The optical bandgap was 1.67 eV at the substrate temperature of $150^{\circ}C$, 1.57 eV at $200^{\circ}C$, 1.50 eV at $250^{\circ}C$, and 1.44 eV at $300^{\circ}C$.

Synthesis of Cd1-xZnxS/K4Nb6O17 Composite and its Photocatalytic Activity for Hydrogen Production

  • Liang, Yinghua;Shao, Meiyi;Liu, Li;Hu, Jinshan;Cui, Wenquan
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.1182-1190
    • /
    • 2014
  • $Cd_{1-x}Zn_xS$-sensitized $K_4Nb_6O_{17}$ composite photocatalysts (designated $Cd_{1-x}Zn_xS/K_4Nb_6O_{17}$) were prepared via a simple deposition-precipitation method. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectrometry (EDS), $N_2$ sorption, ultraviolet-visible light diffuse reflectance spectroscopy (UV-Vis DRS), photoluminescence measurements (PL), and X-ray photoelectron spectroscopy (XPS). The $Cd_{0.8}Zn_{0.2}S$ particles were scattered on the surface of $K_4Nb_6O_{17}$, and had a relatively uniform size distribution around 50 nm. The absorption edge of $K_4Nb_6O_{17}$ was shifted to the visible light region and the recombination of photo-generated electrons and holes suppressed after $Cd_{0.8}Zn_{0.2}S$ loading. The $Cd_{0.8}Zn_{0.2}S$(25 wt %)/$K_4Nb_6O_{17}$ composite possessed the highest photocatalytic activity for hydrogen production under visible light irradiation, evolving 8.278 mmol/g in 3 h. Recyclability tests were performed, and the composite photocatalysts were found to be fairly stable. The mechanism of charge separation between the photogenerated electrons and holes at the $Cd_{0.8}Zn_{0.2}S/K_4Nb_6O_{17}$ composite was discussed.

Properties of ZnO/TiO2 Bilayer Thin Films with a Low Temperature ALD Process (저온 원자층증착법으로 제조된 ZnO/TiO2 나노이층박막의 물성 연구)

  • Noh, Yunyoung;Han, Jeungjo;Yu, Byungkwan;Song, Ohsung
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.6
    • /
    • pp.498-504
    • /
    • 2011
  • We examined the microstructure and optical properties of crystallized ~30 nm-ZnO/~10 nm amorphous $TiO_2$ nano bilayered films as nano electrodes were deposited at extremely low substrate temperatures of $150-210^{\circ}C$. The bilayered films were deposited on silicon substrates with 10 cm diameters by ALD (atomic layer deposition) using DEZn (diethyl zinc(Zn(C2H5)2)) and TDMAT (tetrakis dimethyl-amid $titanium(Ti(N(CH_3)_2)_4)$ as the ZnO and $TiO_2$ precursors, respectively, and $H_2O$ as the oxidant. The microstructure, phase, and optical properties of the bilayered films were examined by FE-SEM, TEM, XRD, AES, and UV-VIS-NIR spectroscopy. FE-SEM and TEM showed that all bilayered films were deposited very uniformly and showed crystallized ZnO and amorphous $TiO_2$ layers. AES depth profiling showed that the ZnO and $TiO_2$ films had a stoichiometric composition of 1:1 and 1:2, respectively. These bilayered films have optical absorption properties in a wide range of ultraviolet wavelengths, 250-390 nm, whereas the single ZnO and $TiO_2$ films showed an absorption range of 350-380nm.

A Study on Fractionation and Characterization of Water-Soluble Natural Fe-Chelates From Garbage Compost and Activated Sewage Sludge (활성오니(活性汚泥) 및 진개퇴비중(塵芥堆肥中) 수용성(水溶性) 철(鐵) 킬레이트의 분리(分離)와 특성(特性)에 관(關)한 연구(硏究))

  • Park, Nae-Joung;Lindsay, W.L.
    • Applied Biological Chemistry
    • /
    • v.18 no.4
    • /
    • pp.194-202
    • /
    • 1975
  • This study was conducted to study the properties of the water-soluble natural chelating agents from garbage compost and activated sewage sludge responsible for Fe chelation, which is closely associated with the effectiveness in correcting iron chlorosis in plant. The water-soluble fraction of these materials was fractionated by menas of Sephadex gel filtration and the fractions of Fe chehates were traced by radioactive $^{59}Fe$. The fractions were examined by ultraviolet and infrared. spectroscopy and stability constants for Fe. The water-soluble fraction from garbage compost was separated by Sephadex G-25 into approximately four fractions. Most of the added $^{59}Fe$ was associated with fraction I, which appeared at the void volume. Further fractionation by Sephadex G-50 indicated that the molecular weight of water-soluble chelating agents is in the approximate range of 5000 to 10,000. The water-soluble fraction from activated sewage sludge gave six fractions by Sephadex G-25. Most of the added $^{59}Fe$ was found in the fraction I,II, and III, The molecular weights of most chelating agents associated with $^{59}Fe$ appeared to be less than 5,000 and those of fraction I that appeared at the void volume was in the range of 5,000 to 1,000. Discrepancy between radio activity count and UV absorption indicated the heterogeneity of the fractions obtained by Sephadex gel filtration. Ultraviolet absorption spectra of all fractions separated by Sephadex G-25 and containing chelating agents showed no differences. Fraction IV and V of sewage extract showed absorption maxima and shifting similar to nucleic acid components suggesting the presence of decomposition products of nucleic acid. Similarity fraction VI contained phenolic type amino acid groups. Fraction I of compost extract contained most of the added $^{59}Fe$ and showed weak but extra definite absorption in the 1230, and $1270cm^{-1}$ region, suggesting that extra oxygen groups in polyphenolic structure were probably involved in Fe chelation. In sewage extract, fraction I,II, and III in which most of the $^{59}Fe$ was found, showed strong definite polypeptide absorption in the region of $1540cm^{-1}$ due to NH deformation and C-N stretching of amide groups in the peptidebond. These extra functional groups in fraction I, II, and III appeared to be associated with Fe chelation. The other fractions, not associated with $^{59}Fe$, still have carboxyl and hydroxyl groups, suggesting that these functional groups in these water extracts may not independently form the Fe chelates. Precipitation of ferric hydroxide precluded measuring the stability constants for Fe-chelates. However, the formation constants for Zn chelates as log K values for compost extract and sewage extract at pH 4.0 from which the strength of chelation with Fe could be presumed, were 8.23, and 9.75, respectively, indicating strong complexation with metals. The chelating capacity of compost extract containing 6.5 g organic matter per liter was 0.82 mM, and that of sewage extract containing 5.3 g per liter was 0. 64 mM.

  • PDF

Enhancement of Nitric Oxide with nonthermal plasma jet and its effect on Escherichia coli inactivation and various type of cancer cell

  • Shaw, Priyanka;Kumar, Naresh;Attri, Pankaj;Choi, Eun Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.230.2-230.2
    • /
    • 2016
  • A new approach for antimicrobial is based on the overproduction of reactive nitrogen species (RNS), especially; nitric oxide (NO) and peroxinitrite ($ONOO^-$-) are important factors to deactivate the bacteria. Recently, non-thermal atmospheric pressure plasma jet (APPJ) has been frequently used in the field of microbial sterilization through the generation of different kinds of RNS/ROS species. However, in previous study we showed APPJ has combine effects ROS/RNS on bacterial sterilization. It is not still clear whether this bacterial killing effect has been done through ROS or RNS. We need to further investigate separate effect of ROS and RNS on bacterial sterilization. Hence, in this work, we have enhanced NO production, especially; by applying a 1% of HNO3 vapour to the N2 based APPJ. In comparison with nitrogen plasma with inclusion of water vapour plasma, it has been shown that nitrogen plasma with inclusion of 1% of HNO3 vapour has higher efficiency in killing the E. coli and different type of cancer cell through the high production of NO. We also investigate the enhancement of NO species both in atmosphere by emission spectrum and inside the solution by ultraviolet absorption spectroscopy. Moreover, qPCR analysis of oxidative stress mRNA shows higher gene expression. It is noted that 1% of HNO3 vapour plasma generates high amount of NO for killing bacteria and cancer cell killing.

  • PDF

Enhancement of Nitric Oxide with nonthermal plasma jet and its effect on Escherichia coli inactivation

  • Shaw, Priyanka;Kumar, Naresh;Attri, Pankaj;Kwak, Hyong Sin;Choi, Eun Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.159-159
    • /
    • 2015
  • A new approach for antimicrobial is based on the overproduction of reactive nitrogen species (RNS), especially; nitric oxide (NO) and peroxinitrite (ONOO-) are important factors to deactivate the bacteria. Recently, non-thermal atmospheric pressure plasma jet (APPJ) has been frequently used in the field of microbial sterilization through the generation of different kinds of RNS/ROS species. However, in previous study we showed APPJ has combine effects ROS/RNS on bacterial sterilization. It is not still clear whether this bacterial killing effect has been done through ROS or RNS. We need to further investigate separate effect of ROS and RNS on bacterial sterilization. Hence, in this work, we have enhanced NO production, especially; by applying a 1% of HNO3 vapour to the N2 based APPJ. In comparison with nitrogen plasma with inclusion of water vapour plasma, it has been shown that nitrogen plasma with inclusion of 1% of HNO3 vapour has higher efficiency in killing the E. coli through the high production of NO. We also investigate the enhancement of NO species both in atmosphere by emission spectrum and inside the solution by ultraviolet absorption spectroscopy. Moreover, qPCR analysis of oxidative stress mRNA shows higher gene expression. It is noted that 1% of HNO3 vapour plasma generates high amount of NO for killing bacteria.

  • PDF

Synthesis of Ti-SBA-15 Doped with Lanthanide Ions and Their Photocatalytic Activity (란탄족 이온이 도핑된 Ti-SBA-15의 합성 및 그들의 광촉매 활성)

  • Hong, Seong-Soo
    • Clean Technology
    • /
    • v.26 no.1
    • /
    • pp.7-12
    • /
    • 2020
  • Ti-SBA-15 catalysts doped with lanthanide ions (Ln/Ti-SBA-15) were successfully synthesized using conventional hydrothermal method. In addition, they were characterized by XRD, FT-IR, DRS, BET, and PL. The activity of these materials on the photocatalytic decomposition of methylene blue under ultraviolet light irradiation was also examined. Ti-SBA-15 catalysts doped with various lanthanide ions maintained their mesoporous structure. The pore size and pore volume of Ln/Ti-SBA-15 materials decreased but their surface area increased upon the doping of lanthanide ion. Ln/Ti-SBA-15 materials exhibited the type IV nitrogen isotherm with desorption hysteresis loop type H2, which was characteristic of mesoporous materials. The size of hysteresis increased in the doping of lanthanide ions on Ti-SBA-15 material. There was no absorption in the visible region (> 400 nm) regardless of the doping of lanthanide ions to TiO2 particles, while the broad bands at 220 nm appeared at the Ln/Ti-SBA-15 samples, indicating the framework incorporation of titanium into SBA-15. 1 mol% Pr/ Ti-SBA-15 catalysts showed the highest photocatalytic activity on the decomposition of methylene blue but the Ti-SBA-15 catalysts doped with Eu, Er, and Nd ions showed lower activity compared to pure Ti-SBA-15 catalyst. The PL peaks appeared at about 410 nm at all catalysts while the excitonic PL signal was proportional to the photocatalytic activity for the decomposition of methylene blue.

Electrochemical Properties and Adsorption Performance of Carbon Materials Derived from Coffee Grounds (커피찌꺼기로부터 얻어진 탄소 소재의 전기화학적 성질 및 흡착 성능)

  • Jin Ju Yoo;Nayeon Ko;Su Hyun Oh;Jeongyeon Oh;Mijung Kim;Jaeeun Lee;Taeshik Earmme;Joonwon Bae
    • Applied Chemistry for Engineering
    • /
    • v.34 no.5
    • /
    • pp.529-533
    • /
    • 2023
  • The fundamental electrochemical properties and adsorption capabilities of the carbonized product derived from coffee grounds, a prevalent form of lignocellulose abundantly generated in our daily lives, have been extensively investigated. The structure and morphology of the resultant carbonized product, obtained through a carbonization process conducted at a relatively low temperature of 600 ℃, were meticulously examined using a scanning electron microscope. Raman spectroscopy measurements yielded a relative crystallinity (D/G ratio) of the carbon product of 0.64. Electrical measurements revealed a linear ohmic relationship within the carbonized product. Furthermore, the viability of utilizing this carbonized material as an anode in lithium-ion batteries was evaluated through half-cell charge/discharge experiments, demonstrating an initial specific capacity of 520 mAh/g. Additionally, the adsorption performance of the carbon material towards a representative dye molecule was assessed via UV spectroscopy analyses. Supplementary experiments corroborated the material's ability to adsorb a distinct model molecule characterized by differing surface polarity, achieved through surface modification. This article presents pivotal findings that hold substantial implications for forthcoming research endeavors centered around the recycling of lignocellulose waste.

Biogenic fabrication and characterization of silver nanoparticles using aqueous-ethanolic extract of lichen (Usnea longissima) and their antimicrobial activity

  • Siddiqi, Khwaja Salahuddin;Rashid, M.;Rahman, A.;Tajuddin, Tajuddin;Husen, Azamal;Rehman, Sumbul
    • Biomaterials Research
    • /
    • v.22 no.4
    • /
    • pp.328-336
    • /
    • 2018
  • Background: Biogenic fabrication of silver nanoparticles from naturally occurring biomaterials provides an alternative, eco-friendly and cost-effective means of obtaining nanoparticles. It is a favourite pursuit of all scientists and has gained popularity because it prevents the environment from pollution. Our main objective to take up this project is to fabricate silver nanoparticles from lichen, Usnea longissima and explore their properties. In the present study, we report a benign method of biosynthesis of silver nanoparticles from aqueous-ethanolic extract of Usnea longissima and their characterization by ultraviolet-visible (UV-vis), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) analyses. Silver nanoparticles thus obtained were tested for antimicrobial activity against gram positive bacteria and gram negative bacteria. Results: Formation of silver nanoparticles was confirmed by the appearance of an absorption band at 400 nm in the UV-vis spectrum of the colloidal solution containing both the nanoparticles and U. longissima extract. Poly(ethylene glycol) coated silver nanoparticles showed additional absorption peaks at 424 and 450 nm. FTIR spectrum showed the involvement of amines, usnic acids, phenols, aldehydes and ketones in the reduction of silver ions to silver nanoparticles. Morphological studies showed three types of nanoparticles with an abundance of spherical shaped silver nanoparticles of 9.40-11.23 nm. Their average hydrodynamic diameter is 437.1 nm. Results of in vitro antibacterial activity of silver nanoparticles against Staphylococcus aureus, Streptococcus mutans, Streptococcus pyrogenes, Streptococcus viridans, Corynebacterium xerosis, Corynebacterium diphtheriae (gram positive bacteria) and Escherichia coli, Klebsiella pneuomoniae and Pseudomonas aeruginosa (gram negative bacteria) showed that it was effective against tested bacterial strains. However, S. mutans, C. diphtheriae and P. aeruginosa were resistant to silver nanoparticles. Conclusion: Lichens are rarely exploited for the fabrication of silver nanoparticles. In the present work the lichen acts as reducing as well as capping agent. They can therefore, be used to synthesize metal nanoparticles and their size may be controlled by monitoring the concentration of extract and metal ions. Since they are antibacterial they may be used for the treatment of bacterial infections in man and animal. They can also be used in purification of water, in soaps and medicine. Their sustained release may be achieved by coating them with a suitable polymer. Silver nanoparticles fabricated from edible U. longissima are free from toxic chemicals and therefore they can be safely used in medicine and medical devices. These silver nanoparticles were stable for weeks therefore they can be stored for longer duration of time without decomposition.

Structural and optical properties of Ni-substituted spinel $LiMn_2O_4$ thin films (니켈 치환된 스피넬 LiMn2O4 박막의 구조적, 광학적 성질)

  • Lee, Jung-Han;Kim, Kwang-Joo
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.5
    • /
    • pp.527-533
    • /
    • 2006
  • Spinel $LiNi_xMn_{2-x}O_4$ thin films were synthesized up to x = 0.9 by a sol-gel method employing spin-coating. The Ni-substituted films were found to maintain cubic structure at low x but to exhibit tetragonal structure for $x{\geq}0.6$. Such cubic-tetragonal phase transition indicates that $Ni^{3+}(d7)$ ions with low-spin $(t_{2g}^6,e_g^1)$ state occupy the octahedral sites of the compound, thus being subject to the Jahn-Teller distortion. By x-ray photoelectron spectroscopy both $Ni^{2+}$ and $Ni^{3+}$ ions were detected. Optical properties of the $LiNi_xMn_{2-x}O_4$ films were investigated by spectroscopic ellipsometry (SE) in the visible?ultraviolet range. The measured dielectric function spectra by SE mainly consist of broad absorption structures attributed to charge-transfer (CT) transitions, $O^{2-}(2p){\rightarrow}Mn^{4+}(3d)$ for 1.9 $(t_{2g})$ and $2.8{\sim}3.0$ eV $(e_g)$ structures and $O^{2-}(2p){\rightarrow}Mn^{3+}(3d)$ for 2.3 $(t_{2g})$ and $3.4{\sim}3.6$ eV $(e_g)$ structures. Also, sharp absorption structures were observed at about 1.6, 1.7, and 1.9 eV, interpreted as due to d-d crystal-field transitions within the octahedral $Mn^{3+}$ ion. The strengths of these absorption structures are reduced by the Ni substitution. Rapid reduction of the CT transition strength involving the eg states for x = 0.6 is attributed to the reduced wavefunction overlap between the $e_g$ and the $O^{2-}(2p)$ states due to the tetragonal extension of the lattice constant by the Jahn-Teller effect.