Acknowledgement
이 연구는 한국연구재단(NRF-2021R1F1A1061939)과 과학기술정보통신부(RS-2022-00154546)의 지원으로 수행되었습니다.
References
- C. Wongsiridetchai, W. Chiangkham, N. Khlaihiran, T. Sawangwan, P. Wongwathanarat, T. Charoenrat, and S. Chantorn, Alkaline pretreatment of spent coffee grounds for oligosaccharides production by mannanase from Bacillus sp. GA2(1), Agric. Nat. Resour., 52, 222-227 (2018). https://doi.org/10.1016/j.anres.2018.09.012
- S. Tajik, P. Ziarati, and L. Cruz-Rodriguez, Coffee waste as novel bio-adsorbent: Detoxification of nickel from contaminated soil and Coriandrum Sativum, Methods, 38, 2693-2504 (2020).
- J. McNutt and Q. (Sophia) He, Spent coffee grounds: A review on current utilization, J. Ind. Eng. Chem., 71, 78-88 (2019). https://doi.org/10.1016/j.jiec.2018.11.054
- V. K. Thakur, M. K. Thakur, P. Raghavan, and M. R. Kessler, Progress in green polymer composites from lignin for multifunctional applications: A review, ACS Sustain. Chem. Eng., 2, 1072- 1092 (2014). https://doi.org/10.1021/sc500087z
- F. Taleb, M. Ammar, and M. Mosbah, Chemical modification of lignin derived from spent coffee grounds for methylene blue adsorption, Sci. Rep., 10, 11048 (2020).
- J. Y. Jeong, D. J. Lee, J. Heo, D. H. Lim, Y. G. Seo, J. H. Ahn, and C. H. Choi, Development of biomass-drived anode material for lithium-ion battery, Clean Technol., 26, 131-136 (2020).
- M.-J. Kim, J. H. Choi, T. R. Choi, S. S. Choi, J. H. Ha, and Y. -S. Lee, Enhancement of manganese removal ability from water phase using biochar of Prinus densiflora bark, Appl. Chem. Eng., 31, 526-531 (2020).
- Y.-J. Shin, D.-Y. Song, E.-J. Lee, and J.-W. Lee, Characteristics of biochar derived from lignocellulosic biomass and effect of adsorption of methylene blue, Appl. Chem. Eng., 34, 153-160 (2023).
- H.-J. Choi, Applicability of composite beads, spent coffee grounds/chitosan, for the adsorptive removal of Pb(II) from aqueous solutions, Appl. Chem. Eng., 30, 536-545 (2019).
- T. Sangprasert, V. Sattayarut, C. Rajrujithong, P. Khanchaitit, P. Khemthong, C. Chanthad, and N. Grisdanurak, Making use of the inherent nitrogen content of spent coffee grounds to create nanostructured activated carbon for supercapacitor and lithium-ion battery applications, Diam. Relat. Mater., 127, 109164 (2022).
- Q. Xie, S. Qu, Y. Zhang, and P. Zhao, Nitrogen-enriched graphene-like carbon architecture with tunable porosity derived from coffee ground as high performance anodes for lithium ion batteries, Appl. Surf. Sci., 537, 148092 (2021).
- Y. J. Hwang, S. K. Jeong, K. S. Nahm, J. S. Shin, and A. M. Stephan, Pyrolytic carbon derived from coffee shells as anode materials for lithium batteries, J. Phys. Chem. Solids, 68, 182-188 (2007). https://doi.org/10.1016/j.jpcs.2006.10.007
- O.-N. Hur, S. Park, S. Park, B.-H. Kang, C.-S. Lee, J.-Y. Hong, S.-H. Park, and J. Bae, A study on fabrication of polypyrrole@lignin composite and electrical sensing and metal ion adsorption capabilities, Mater. Chem. Phys., 285 126166 (2022).
- Z. Wen, C. Xu, X. Qian, Y. Zhang, X. Wang, S. Song, M. Dai, and C. Zhang, A two-step carbon fiber surface treatment and its effect on the interfacial properties of CF/EP composites: The electrochemical oxidation followed by grafting of silane coupling agent, Appl. Surf. Sci., 486, 546-554 (2019). https://doi.org/10.1016/j.apsusc.2019.04.248