Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.4.1182

Synthesis of Cd1-xZnxS/K4Nb6O17 Composite and its Photocatalytic Activity for Hydrogen Production  

Liang, Yinghua (College of Chemical Engineering, Hebei United University)
Shao, Meiyi (College of Chemical Engineering, Hebei United University)
Liu, Li (College of Chemical Engineering, Hebei United University)
Hu, Jinshan (College of Chemical Engineering, Hebei United University)
Cui, Wenquan (College of Chemical Engineering, Hebei United University)
Publication Information
Abstract
$Cd_{1-x}Zn_xS$-sensitized $K_4Nb_6O_{17}$ composite photocatalysts (designated $Cd_{1-x}Zn_xS/K_4Nb_6O_{17}$) were prepared via a simple deposition-precipitation method. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectrometry (EDS), $N_2$ sorption, ultraviolet-visible light diffuse reflectance spectroscopy (UV-Vis DRS), photoluminescence measurements (PL), and X-ray photoelectron spectroscopy (XPS). The $Cd_{0.8}Zn_{0.2}S$ particles were scattered on the surface of $K_4Nb_6O_{17}$, and had a relatively uniform size distribution around 50 nm. The absorption edge of $K_4Nb_6O_{17}$ was shifted to the visible light region and the recombination of photo-generated electrons and holes suppressed after $Cd_{0.8}Zn_{0.2}S$ loading. The $Cd_{0.8}Zn_{0.2}S$(25 wt %)/$K_4Nb_6O_{17}$ composite possessed the highest photocatalytic activity for hydrogen production under visible light irradiation, evolving 8.278 mmol/g in 3 h. Recyclability tests were performed, and the composite photocatalysts were found to be fairly stable. The mechanism of charge separation between the photogenerated electrons and holes at the $Cd_{0.8}Zn_{0.2}S/K_4Nb_6O_{17}$ composite was discussed.
Keywords
$Cd_{0.8}Zn_{0.2}S/K_4Nb_6O_{17}$; Photocatalysis; Hydrogen evolution; Precipitation; Nanomaterials;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Fujishima, A.; Honda, K. Nature 1972, 238, 37.   DOI   ScienceOn
2 Khan, S.; Al-shahry, M.; Ingler, W. B., Jr. Science 2002, 297, 2243.   DOI   ScienceOn
3 Allen, M. R.; Thibert, A.; Sabio, E. M.; Browning, N. D.; Larsen, D. S.; Osterloh, F. E. Chem. Mater. 2010, 22, 1220.   DOI   ScienceOn
4 Kudo, A.; Miseki, Y. Chem. Soc. Rev. 2009, 38, 253.   DOI   ScienceOn
5 Zou, Z. G.; Ye, J. H.; Sayama, K.; Arakawa, H. Nature 2001, 414, 625.   DOI   ScienceOn
6 Maeda, K.; Eguchi, M.; Youngblood, W. J.; Mallouk, T. E. Chem. Mater. 2008, 20, 6770.   DOI   ScienceOn
7 Kumar, V.; Govind; Uma, S. J. Hazard. Mater. 2011, 189, 502.   DOI   ScienceOn
8 Meng, F.; Li, J. T.; Hong, Z. L.; Zhi, M. J.; Sakla, A.; Xiang, C. C. Wu, N. Q. Catal. Today 2013, 199, 48.   DOI   ScienceOn
9 Meng, F.; Hong, Z. L.; Arndt, J.; Li, M.; Zhi, M. J.; Yang, F.; Wu, N. Q. Nano Research 2012, 5, 213.   DOI
10 Kudo, A.; Tanaka, A.; Domen, K.; Aika, K.; Onishi, T. J. Cata. 1988, 111, 67.   DOI   ScienceOn
11 Koinuma, M.; Seki, H.; Matsumoto, Y. J. Electroanal. Chem. 2002, 531, 81.   DOI   ScienceOn
12 Liang, Y. H.; Shao, M. Y.; Cui, W. Q.; Liu, L.; McEvoy, J. G. J. Mol. Catal. A: Chem. 2013, 370, 87.   DOI   ScienceOn
13 Cui, W. Q.; Shao, M. Y.; Liu, L.; Liang, Y. H.; Rana, D. Appl. Surf. Sci. 2013, 276, 823.   DOI   ScienceOn
14 Xing, C. J.; Zhang, Y. J.; Yan, W.; Guo, L. J. Int. J. Hydrogen Energy 2006, 31, 18.
15 Zhang, P.; Gao, L. J. Colloid Interface Sci. 2004, 272, 99.   DOI   ScienceOn
16 Xing, C. J.; Zhang, Y. J.; Yan, W.; Guo. L. J. Int. J. Hydrogen Energy 2006, 31, 2018.   DOI   ScienceOn
17 Li, M. T.; Jiang, J. G.; Guo. L. J. Int. J. Hydrogen Energy 2010, 35, 7036.   DOI   ScienceOn
18 Wang, L.; Wang, W. Z.; Shang, M.; Yin, W. Z.; Sun, S. M.; Zhang, L. Int. J. Hydrogen Energy 2010, 35, 19.   DOI   ScienceOn
19 Dean, J. A. Lange's Handbook of Chemistry; McGraw-Hill Book Co.: Beijing, 1999.
20 Cullit, B. D. Elements of X-ray Diffraction, 2nd ed.; Addision Wesley: London, 1978.
21 Mariappan, R.; Ragavendar, M.; Ponnuswamy, V. J. Alloys Compd. 2011, 509, 7337.   DOI   ScienceOn
22 Chen, J. B.; Lin, S.; Yan, G. Y. Catal. Commun. 2008, 9, 65-69.   DOI   ScienceOn
23 Xing, C. J.; Zhang, Y. J.; Yan, W.; Guo, L. J. Int. J. Hydrogen Energy 2006, 31, 2018.   DOI   ScienceOn
24 Chen, H. W.; Young, K.; Kuo, Y. L. Water Res. 2007, 41, 2067.
25 Zhang, Y. C.; Chen, W. W.; Hu, X. Y. Cryst. Growth Des. 2007, 7, 580.   DOI   ScienceOn
26 Wang, Q. Q.; Lin, B. Z.; Xu, B. H.; Xiao, L. L.; Chen, Z. J.; Pian, X. T. Microporous Mesoporous Mater. 2010, 130, 344-351.   DOI   ScienceOn
27 Huo, Y. N.; Yang, X. L.; Zhu, J. Appl. Catal. B: Environ. 2011, 106, 69.
28 Huang, B. C.; Yang, Y.; Chen, X. S.; Ye, D. Q. Catal. Commun. 2011, 11, 844.
29 Wang, L.; Wang, W. Z.; Shang, M.; Yin, W. Z.; Sun, S. M.; Zhang, L. Int. J. Hydrogen Energy 2010, 35, 19.   DOI   ScienceOn
30 Domen, K.; Ebina, Y.; Sekine, T.; Tanaka, A.; Kondo, J.; Hirose, C.Catal. Today 1993, 16, 479.   DOI   ScienceOn
31 Liu, X. J.; Zeng, P.; Peng, T. Y.; Zhang, X. H.; Deng, K. J. Int. J. Hydrogen Energy 2012, 37, 1375-1384.   DOI   ScienceOn
32 Macias-Sanchez, S. A.; Nava, R.; Hernandez-Morales, V.; Acosta-Silva, Y. J.; Pawelec, B. Int. J. Hydrogen Energy 2013, 38, 11799-11810.   DOI   ScienceOn
33 Bao, N. Z.; Shen, L. M.; Takata, T.; Domen, K. Chem. Mater. 2008, 20, 110.   DOI   ScienceOn
34 Lin, H. Y.; Lee, T. H.; Sie, C. Y. Int. J. Hydrogen Energy 2008, 33, 4055.   DOI   ScienceOn
35 Cui, W. Q.; Liu, Y. F.; Liu, L.; Hu, J. S.; Liang, Y. H. Appl. Catal. A: Gen. 2012, 417-418, 111.   DOI   ScienceOn
36 Domen, K.; Kudo, A.; Shibata, M.; Tanaka, A.; Maruya, K.; Onishi, T. J. Chem. Soc., Chem. Commun. 1986, 23, 1706.
37 Xiao, Q.; Zhang, J.; Xiao, C.; Tan, X. K. Catal. Commun. 2008, 9, 1247-1253.   DOI   ScienceOn
38 Li, N.; Zhou, B. Y.; Guo, P. H.; Zhou, J. C.; Jing, D. W. Int. J. Hydrogen Energy 2013, 38, 11268-11277.   DOI   ScienceOn