DOI QR코드

DOI QR Code

Structural and Optical Properties of SnS Thin Films Deposited by RF Magnetron Sputtering

RF 마그네트론 스퍼터링법으로 제조한 SnS 박막의 구조적 및 광학적 특성

  • Hwang, Donghyun (Division of Materials Science and Engineering, Silla University)
  • 황동현 (신라대학교 신소재공학부)
  • Received : 2018.04.18
  • Accepted : 2018.04.30
  • Published : 2018.04.30

Abstract

SnS thin films with different substrate temperatures ($150 {\sim}300^{\circ}C$) as process parameters were grown on soda-lime glass substrates by RF magnetron sputtering. The effects of substrate temperature on the structural and optical properties of SnS thin films were investigated by X-ray diffraction (XRD), Raman spectroscopy (Raman), field-emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS), and Ultraviolet-visible-near infrared spectrophotometer (UV-Vis-NIR). All of the SnS thin films prepared at various substrate temperatures were polycrystalline orthorhombic structures with (111) planes preferentially oriented. The diffraction intensity of the (111) plane and the crystallite size were improved with increasing substrate temperature. The three major peaks (189, 222, $289cm^{-1}$) identified in Raman were exactly the same as the Raman spectra of monocrystalline SnS. From the XRD and Raman results, it was confirmed that all of the SnS thin films were formed into a single SnS phase without impurity phases such as $SnS_2$ and $Sn_2S_3$. In the optical transmittance spectrum, the critical wavelength of the absorption edge shifted to the long wavelength region as the substrate temperature increased. The optical bandgap was 1.67 eV at the substrate temperature of $150^{\circ}C$, 1.57 eV at $200^{\circ}C$, 1.50 eV at $250^{\circ}C$, and 1.44 eV at $300^{\circ}C$.

Keywords

References

  1. A. Schneikart, H.J. Schimper, A. Klein, W. Jaegermann, Efficiency limitations of thermally evaporated thin-film SnS solar cells, J. Phys. D. Appl. Phys. 46 (2013).
  2. L. Zhao, Y. Di, C. Yan, F. Liu, Z. Cheng, L. Jiang, X. Hao, Y. Lai, J. Li, In situ growth of SnS absorbing layer by reactive sputtering for thin film solar cells, RSC Adv. 6 (2016) 4108-4115. https://doi.org/10.1039/C5RA24144H
  3. Y. Kawano, J. Chantana, T. Minemoto, Impact of growth temperature on the properties of SnS film prepared by thermal evaporation and its photovoltaic performance, Curr. Appl. Phys. 15 (2015) 897-901. https://doi.org/10.1016/j.cap.2015.03.026
  4. S. Di Mare, D. Menossi, A. Salavei, E. Artegiani, F. Piccinelli, A. Kumar, G. Mariotto, A. Romeo, SnS Thin Film Solar Cells: Perspectives and Limitations, Coatings. 7 (2017) 34. https://doi.org/10.3390/coatings7020034
  5. C. Letters, E. Guneri, F. Gode, C. Ulutas, F. Kirmizigul, G. Altindemir, C. Gumus, Properties of P-Type SnS Thin Films Prepared by Chemical Bath Deposition, Chalcogenide Lett. 7 (2010) 685-694.
  6. F. Gode, E. Guneri, O. Baglayan, Effect of trisodium citrate concentration on structural, optical and electrical properties of chemically deposited tin sulfide films, Appl. Surf. Sci. 318 (2014) 227-233. https://doi.org/10.1016/j.apsusc.2014.04.128
  7. M. Ichimura, K. Takeuchi, Y. Ono, E. Arai, Electrochemical deposition of SnS thin $^{(R)}$ lms, Thin Solid Films. 362 (2000) 99-102.
  8. N. Sato, M. Ichimura, E. Arai, Y. Yamazaki, Characterization of electrical properties and photosensitivity of SnS thin films prepared by the electrochemical deposition method, Sol. Energy Mater. Sol. Cells. (2005) 153-165.
  9. L.A. Burton, D. Colombara, R.D. Abellon, F.C. Grozema, L.M. Peter, T.J. Savenije, G. Dennler, A. Walsh, Synthesis, characterization, and electronic structure of single-crystal SnS, Sn2S3, and SnS2, Chem. Mater. 25 (2013) 4908-4916. https://doi.org/10.1021/cm403046m
  10. J.Y. Kim, S.M. George, Tin Monosulfide Thin Films Grown by Atomic Layer Deposition Using Tin 2,4-Pentanedionate and Hydrogen Sulfide, J. Phys. Chem. C. 114 (2010) 17597-17603. https://doi.org/10.1021/jp9120244
  11. P. Sinsermsuksakul, J. Heo, W. Noh, A.S. Hock, R.G. Gordon, Atomic layer deposition of tin monosulfide thin films, Adv. Energy Mater. 1 (2011) 1116-1125. https://doi.org/10.1002/aenm.201100330
  12. R.W. Miles, O.E. Ogah, G. Zoppi, I. Forbes, Thermally evaporated thin films of SnS for application in solar cell devices, Thin Solid Films. 517 (2009) 4702-4705. https://doi.org/10.1016/j.tsf.2009.03.003
  13. P.A. Nwofe, K.T.R. Reddy, G. Sreedevi, J.K. Tan, I. Forbes, R.W. Miles, Single phase, large grain, p-conductivity-type SnS layers produced using the thermal evaporation method, Energy Procedia. 15 (2012) 354-360. https://doi.org/10.1016/j.egypro.2012.02.043
  14. R.E. Banai, H. Lee, M.A. Motyka, R. Chandrasekharan, N.J. Podraza, J.R.S. Brownson, M.W. Horn, Optical properties of sputtered SnS thin films for photovoltaic absorbers, IEEE J. Photovoltaics. 3 (2013) 1084-1089. https://doi.org/10.1109/JPHOTOV.2013.2251758
  15. M.G. Sousa, A.F. Da Cunha, P.A. Fernandes, Annealing of RF-magnetron sputtered SnS2 precursors as a new route for single phase SnS thin films, J. Alloys Compd. 592 (2014) 80-85. https://doi.org/10.1016/j.jallcom.2013.12.200
  16. P. Sinsermsuksakul, L. Sun, S.W. Lee, H.H. Park, S.B. Kim, C. Yang, R.G. Gordon, Overcoming Efficiency Limitations of SnS-Based Solar Cells, Adv. Energy Mater. 4 (2014) 1-7.
  17. A.L. Patterson, The scherrer formula for X-ray particle size determination, Phys. Rev. 56 (1939) 978-982. https://doi.org/10.1103/PhysRev.56.978
  18. H.R. Chandrasekhar, R.G. Humphreys, U. Zwick, M. Cardona, Infrared and Raman spectra of the IV-VI compounds SnS and SnSe, Phys. Rev. B. 15 (1977) 2177-2183. https://doi.org/10.1103/PhysRevB.15.2177
  19. P.M. NikoliCt, L. Miljkovik, P. Mihaj, B. LavrenEicS, Splitting and coupling of lattice modes in the layer compound SnS Splitting and coupling of Iattice modes in the layer compound SnS, J. Phys. C Solid State Phys. J. Phys. 10 (1977).
  20. Fridman, Optical Properties and Electronic Structure of Amorphous Germanium, Phys. Status Solidi. 15 (1966) 627-637. https://doi.org/10.1002/pssb.19660150224
  21. M. Devika, N.K. Reddy, K. Ramesh, K.R. Gunasekhar, E.S.R. Gopal, K.T.R. Reddy, Influence of annealing on physical properties of evaporated SnS films, Semicond. Sci. Technol. 21 (2006) 1125-1131. https://doi.org/10.1088/0268-1242/21/8/025
  22. M. Devika, N.K. Reddy, F. Patolsky, K. Ramesh, K.R. Gunasekhar, Temperature dependent structural properties of nanocrystalline SnS structures, Appl. Phys. Lett. 95 (2009) 2012-2015.