• Title/Summary/Keyword: Ultrasonic Parameter

Search Result 175, Processing Time 0.022 seconds

Correlation between Ultrasonic Nonlinearity and Elastic Nonlinearity in Heat-Treated Aluminum Alloy

  • Kim, Jongbeom;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.37 no.2
    • /
    • pp.115-121
    • /
    • 2017
  • The nonlinear ultrasonic technique is a potential nondestructive method to evaluate material degradation, in which the ultrasonic nonlinearity parameter is usually measured. The ultrasonic nonlinearity parameter is defined by the elastic nonlinearity coefficients of the nonlinear Hooke's equation. Therefore, even though the ultrasonic nonlinearity parameter is not equal to the elastic nonlinearity parameter, they have a close relationship. However, there has been no experimental verification of the relationship between the ultrasonic and elastic nonlinearity parameters. In this study, the relationship is experimentally verified for a heat-treated aluminum alloy. Specimens of the aluminum alloy were heat-treated at $300^{\circ}C$ for different periods of time (0, 1, 2, 5, 10, 20, and 50 h). The relative ultrasonic nonlinearity parameter of each specimen was then measured, and the elastic nonlinearity parameter was determined by fitting the stress-strain curve obtained from a tensile test to the 5th-order-polynomial nonlinear Hooke's equation. The results showed that the variations in these parameters were in good agreement with each other.

Studies on the Correlation between Mechanical Properties and Ultrasonic Parameters of Aging 1Cr-1Mo-0.25V Steel

  • Seok Chang-Sung;Kim Jeong-Pyo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.487-495
    • /
    • 2005
  • Mechanical properties of in-service facilities are required to evaluate the integrity of power plants and chemical plants. Non-destructive technique can be used to evaluate the mechanical properties. To investigate the mechanical properties using ultrasonic technique, the four classes of thermally aged specimens were prepared using an artificially accelerated aging method. Ultrasonic tests, tensile tests, fracture toughness tests, and hardness tests were performed for the specimens. Then the mechanical properties were compared with ultrasonic parameters such as attenuation and non-linear parameter. From the investigation, we confirm that the ultrasonic parameter can be used to evaluate the mechanical properties.

Development of Pressure Control System of Contact Transducer for Measurement of Ultrasonic Nonlinear Parameter

  • Lee, In-Ho;Son, Dae-Soo;Choi, Ik-Hwang;Lee, Tae-Hun;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.6
    • /
    • pp.576-581
    • /
    • 2007
  • Ultrasonic nonlinearity has been considered as a promising method to evaluate the micro damage of material; however, its magnitude is so small that its measurement is not easy. Especially, when we use contact PZT transducer, if the contacting pressure is not kept in constant during the measurement then there exists extraneous fluctuation in the measured nonlinearity caused by the unstable contact condition, In this paper, we developed a pneumatic control system to keep the contacting pressure of transducer in constant during the measurement and analyzed the effect of contacting pressure to the ultrasonic nonlinearity measurement As a result, we found that the pressure of transducer in our measurement system should be greater than 170 kPa to measure the ultrasonic nonlinear parameter in stable with no dependency on the contacting pressure.

Application of Nonlinear Ultrasonic Method for Monitoring of Stress State in Concrete

  • Kim, Gyu Jin;Park, Sun Jong;Kwak, Hyo Gyoung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.2
    • /
    • pp.121-129
    • /
    • 2016
  • As the lifespan of concrete structures increases, their load carrying capacity decreases owing to cyclic loads and long-term effects such as creep and shrinkage. For these reasons, there is a necessity for stress state monitoring of concrete members. Particularly, it is necessary to evaluate the concrete structures for behavioral changes by using a technique that can overcome the measuring limitations of usual ultrasonic nondestructive evaluation methods. This paper proposes the use of a nonlinear ultrasonic method, namely, nonlinear resonant ultrasonic spectroscopy (NRUS) for the measurement of nonlinearity parameters for stress monitoring. An experiment compared the use of NRUS method and a linear ultrasonic method, namely, ultrasonic pulse velocity (UPV) to study the effects of continuously increasing loads and cyclic loads on the nonlinearity parameter. Both NRUS and UPV methods found a similar direct relationship between load level and that parameter. The NRUS method showed a higher sensitivity to micro-structural changes of concrete than UPV method. Thus, the experiment confirms the possibility of using the nonlinear ultrasonic method for stress state monitoring of concrete members.

Measurement of Ultrasonic Nonlinear Parameter by Using Non-Contact Ultrasonic Receiver (비접촉식 초음파 수신기를 이용한 초음파 비선형성 측정)

  • Kim, Jongbeom;Jhang, Kyoung-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1133-1137
    • /
    • 2014
  • The ultrasonic nonlinear parameter ${\beta}$ is generally known as an effective parameter for evaluating material degradation. Thus far, most research has been conducted using a contact method. However, since measurement by this contact method is affected by the contact conditions between the transducer and the specimen, additional devices are required to maintain the contact conditions stable during the measurement. To avoid this inconvenience, this paper proposes a noncontact method. In this study, only the receiver was replaced with a noncontact receiver, and then, the ultrasonic nonlinear parameters measured by the newly developed noncontact receiver were compared with those measured by the contact receiver. Results obtained using both these receivers for heat-treated aluminum alloy specimens showed good agreement. From this result, we can confirm that the ultrasonic nonlinear parameter ${\beta}$ can be measured using the proposed noncontact ultrasonic method.

A Study on the Evaluation of Material Degradation of 1Cr-1Mo-0.25V Steel using Ultrasonic Techniques (초음파법을 이용한 1Cr-1Mo-0.25V강의 열화도 평가에 관한 연구)

  • Kim, Jeong-Pyo;Seok, Chang-Sung
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.78-83
    • /
    • 2001
  • It's required mechanical properties of in-service facilities to maintain safety operation in power plants as well as chemical plants. In this study the four classes of the thermally aged 1Cr-1Mo-0.25V specimens were prepared using an artificially accelerated aging method at $630^{\circ}C$. Ultrasonic tests, tensile tests, $K_{IC}$ tests and hardness tests were performed in order to evaluate the degree of degradation of the material. The mechanical properties were decreased as degraded, but the attenuation coefficient and the harmonic generation level of a ultrasonic signal were increased. Expecially the nonlinear parameter of the signal is sensitive and will be a good parameter to evaluate the material degradation.

  • PDF

Evaluation of Ultrasonic Nonlinear Characteristics in Artificially Aged Al6061-T6 (인공시효된 Al6061-T6의 초음파 비선형 특성 평가)

  • Kim, Jongbeom;Lee, KyoungJun;Jhang, Kyung-Young;Kim, ChungSeok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.3
    • /
    • pp.220-225
    • /
    • 2014
  • Generally, the nonlinearity of ultrasonic waves is measured using a nonlinear parameter ${\beta}$, which is defined as the ratio of the second harmonic's magnitude to the power of the fundamental frequency component after the ultrasonic wave propagates through a material. Nonlinear parameter ${\beta}$ is recognized as an effective parameter for evaluating material degradation. In this paper, we evaluated the nonlinear parameter of Al6061-T6 which had been subjected to an artificial aging heat treatment. The measurement was using the transmitted signal obtained from contact-type transducers. After the ultrasonic test, a micro Vickers hardness test was conducted. From the result of the ultrasonic nonlinear parameter, the microstructural changes resulting from the heat treatment were estimated and the hardness test proved that these estimates were reasonable. Experimental results showed a correlation between the ultrasonic nonlinear parameter and microstructural changes produced by precipitation behavior in the material. These results suggest that the evaluation of mechanical properties using ultrasonic nonlinear parameter ${\beta}$ can be used to monitor variations in the mechanical hardness of aluminum alloys in response to an artificial aging heat-treatment.

Comparative Study of Linear and Nonlinear Ultrasonic Techniques for Evaluation Thermal Damage of Tube-Like Structures

  • Li, Weibin;Cho, Younho;Li, Xianqiang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • Ultrasonic guided wave techniques have been widely used for long range nondestructive detection in tube-like structures. The present paper investigates the ultrasonic linear and nonlinear parameters for evaluating the thermal damage in aluminum pipe. Specimens were subjected to thermal loading. Flexible polyvinylidene fluoride (PVDF) comb transducers were used to generate and receive the ultrasonic waves. The second harmonic wave generation technique was used to check the material nonlinearity change after different heat loadings. The conventional linear ultrasonic approach based on attenuation was also used to evaluate the thermal damages in specimens. The results show that the proposed experimental setup is viable to assess the thermal damage in an aluminum pipe. The ultrasonic nonlinear parameter is a promising candidate for the prediction of micro-damages in a tube-like structure.

Applicability of nonlinear ultrasonic technique to evaluation of thermally aged CF8M cast stainless steel

  • Kim, Jongbeom;Kim, Jin-Gyum;Kong, Byeongseo;Kim, Kyung-Mo;Jang, Changheui;Kang, Sung-Sik;Jhang, Kyung-Young
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.621-625
    • /
    • 2020
  • Cast austenitic stainless steel (CASS) is used for fabricating different components of the primary reactor coolant system of pressurized water reactors. However, the thermal embrittlement of CASS resulting from long-term operation causes structural safety problems. Ultrasonic testing for flaw detection has been used to assess the thermal embrittlement of CASS; however, the high scattering and attenuation of the ultrasonic wave propagating through CASS make it difficult to accurately quantify the flaw size. In this paper, we present a different approach for evaluating the thermal embrittlement of CASS by assessing changes in the material properties of CASS using a nonlinear ultrasonic technique, which is a potential nondestructive method. For the evaluation, we prepared CF8M specimens that were thermally aged under four different heating conditions. Nonlinear ultrasonic measurements were performed using a contact piezoelectric method to obtain the relative ultrasonic nonlinearity parameter, and a mini-sized tensile test was performed to investigate the correlation of the parameter with material properties. Experimental results showed that the ultrasonic nonlinearity parameter had a correlation with tensile properties such as the tensile strength and elongation. Consequently, we could confirm the applicability of the nonlinear ultrasonic technique to the evaluation of the thermal embrittlement of CASS.

Effect of System Dependent Harmonics in the Measurement of Ultrasonic Nonlinear Parameter by Using Contact Transducers (접촉식 탐촉자를 이용한 초음파 비선형 파라미터의 측정에서 시스템에 의존하는 고조파 성분의 영향)

  • Choi, Ik-Hwang;Lee, Jae-Ik;Kwon, Goo-Do;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.4
    • /
    • pp.358-363
    • /
    • 2008
  • Ultrasonic nonlinearity has been considered as a promising method to evaluate the micro damage of material; however, its magnitude is so small that its measurement is not easy. Thus, in this study, we investigate the effects of such experimental system dependent factors in the measurement of ultrasonic nonlinear parameter by using contact PZT transducer. Experimental results showed that the effect of system dependent nonlinearity is reduced when the contact pressure and transducer input voltage are sufficiently large. These results will be very useful to find out the proper experiment condition to measure rather accurate nonlinear parameter.