DOI QR코드

DOI QR Code

Applicability of nonlinear ultrasonic technique to evaluation of thermally aged CF8M cast stainless steel

  • Kim, Jongbeom (Korea Atomic Energy Research Institute) ;
  • Kim, Jin-Gyum (Korea Institute of Nuclear Safety) ;
  • Kong, Byeongseo (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kim, Kyung-Mo (Korea Atomic Energy Research Institute) ;
  • Jang, Changheui (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kang, Sung-Sik (Korea Institute of Nuclear Safety) ;
  • Jhang, Kyung-Young (School of Mechanical Engineering, Hanyang University)
  • Received : 2019.07.10
  • Accepted : 2019.09.10
  • Published : 2020.03.25

Abstract

Cast austenitic stainless steel (CASS) is used for fabricating different components of the primary reactor coolant system of pressurized water reactors. However, the thermal embrittlement of CASS resulting from long-term operation causes structural safety problems. Ultrasonic testing for flaw detection has been used to assess the thermal embrittlement of CASS; however, the high scattering and attenuation of the ultrasonic wave propagating through CASS make it difficult to accurately quantify the flaw size. In this paper, we present a different approach for evaluating the thermal embrittlement of CASS by assessing changes in the material properties of CASS using a nonlinear ultrasonic technique, which is a potential nondestructive method. For the evaluation, we prepared CF8M specimens that were thermally aged under four different heating conditions. Nonlinear ultrasonic measurements were performed using a contact piezoelectric method to obtain the relative ultrasonic nonlinearity parameter, and a mini-sized tensile test was performed to investigate the correlation of the parameter with material properties. Experimental results showed that the ultrasonic nonlinearity parameter had a correlation with tensile properties such as the tensile strength and elongation. Consequently, we could confirm the applicability of the nonlinear ultrasonic technique to the evaluation of the thermal embrittlement of CASS.

Keywords

References

  1. O.K. Chopra, G. Ayrault, Aging Degradation of Cast Stainless Steel: Status and Program, Argonne National Labatory, CONF, 1983, pp. 8310143-8310165.
  2. O.K. Chopra, A. Sather, Initial Assessment of the Mechanisms and Significance of Low-Temperature Embrittlement of Cast Stainless Steels in LWR Systems, U. S. Nuclear Regulatory Commission & Argonne National Labatory, NUREG/CR-5385(ANL-89/17), 1990.
  3. U. S. Nuclear Regulatory Commission, Generic aging lessons learned (GALL) report, U. S. Nuclear Regulatory Commission, NUREG-1801, Rev 2 (2010).
  4. C.O. Ruud, A.A. Diaz, M.T. Anderson, Grain Structure Identification and Casting Parameters of Austenitic Stainless Steel (CASS) Piping, Pacific Northwest National Labatory, PNNL-19002, 2009.
  5. K. Sakamoto, T. Furukawa, I. Komura, Y. Kamiyama, T. Mihara, Study on the ultrasound propagation in cast austenitic stainless steel, E-J. Adv. Mainten. 4 (2012) 1-21.
  6. K. Sakamoto, T. Furukawa, I. Komura, Y. Kamiyama, T. Mih, Capability of ultrasonic testing for cast austenitic stainless steel in Japanese pressurized water reactors, E-J. Adv. Mainten. 4 (2012) 21-35.
  7. M.T. Anderson, S.L. Crawford, S.E. Cumblidge, K.M. Denslow, A.A. Diaz, S.R. Doctor, Assessment of Crack Detection in Heavy-Walled Cast Stainless Steel Piping Welds Using Advanced Low-Frequency Ultrasonic Methods, U. S. Nuclear Regulatory Commission & Pacific Northwest National Laboratory, NUREG/CR-6933(PNNL-16292), 2007.
  8. American Society of Mechanical Engineers, Rules for Inservice Inspection of Nuclear Power Plant Components, Section XI, ASME Boiler and Pressure Vessel Code, 2017.
  9. R.E. Jacob, T.L. Moran, A.E. Holmes, A.A. Diaz, M.S. Prowant, Interim Analysis of the EPRI CASS Round Robin Study, Pacific Northwest National Labatory, PNNL-27712, 2018, pp. 1-44.
  10. J. Kim, K.-Y. Jhang, Assessment of thermal degradation by cumulative variation of ultrasonic nonlinear parameter, Int. J. Precis. Eng. Manuf. 18 (2017) 23-29. https://doi.org/10.1007/s12541-017-0003-x
  11. K.-Y. Jhang, Application of nonlinear ultrasonics to the NDE of material degradation, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47 (2000) 540-548. https://doi.org/10.1109/58.842040
  12. K. Balasubramaniam, J.S. Valluri, R.V. Prakash, Creep damage characterization using a low amplitude nonlinear ultrasonic technique, Mater. Char. 62 (2011) 275-286. https://doi.org/10.1016/j.matchar.2010.11.007
  13. J. Kim, K.-Y. Jhang, Evaluation of ultrasonic conlinear characteristics in heat-treated aluminum alloy (Al-Mg-Si-Cu), Ann. Mater. Sci. Eng. 407846 (2013) 1-6.
  14. J. Kim, K.-Y. Jhang, C. Kim, Dependence of nonlinear ultrasonic characteristic on second-phase precipitation in heat-treated Al 6061-T6 alloy, Ultrasonics 82 (2018) 84-90. https://doi.org/10.1016/j.ultras.2017.07.015
  15. J. Park, M. Kim, B. Chi, C. Jang, Correlation of metallurgical analysis & higher harmonic ultrasound response for long term isothermally aged and crept FM steel for USC TPP turbine rotors, NDT Int. 54 (2013) 159-165. https://doi.org/10.1016/j.ndteint.2012.10.008
  16. G. Gutierrez-Vargas, A. Ruiz, J.-Y. Kim, L.J. Jacobs, Characterization of thermal embrittlement in 2507 super duplex stainless steel using nonlinear acoustic effects, NDT Int. 94 (2018) 101-108. https://doi.org/10.1016/j.ndteint.2017.12.004
  17. M. Hong, Z. Su, Q. Wang, L. Cheng, X. Qing, Modeling nonlinearities of ultrasonic waves for fatigue damage characterization: theory, simulation, and experimental validation, Ultrasonics 54 (2014) 770-778. https://doi.org/10.1016/j.ultras.2013.09.023
  18. K.-Y. Jhang, Nonlinear ultrasonic techniques for nondestructive assessment of micro damage in material: a review, Int. J. Precis. Eng. Manuf. 10 (2009) 123-135. https://doi.org/10.1007/s12541-009-0019-y
  19. J.H. Cantrel, W.T. Yost, Effect of precipitate coherency strains on acoustic harmonic generation, J. Appl. Phys. 81 (1997) 2957-2962. https://doi.org/10.1063/1.364327
  20. J.H. Cantrell, Quantitative assessment of fatigue damage accumulation in wavy slip metals from acoustic harmonic generation, Philos. Mag. 86 (2006) 1539-1554. https://doi.org/10.1080/14786430500365358
  21. J.-Y. Kim, L.J. Jacobs, J. Qu, J.W. Littles, Experimental characterization of fatigue damage in a nickel-base superalloy using nonlinear ultrasonic waves, J. Acoust. Soc. Am. 120 (2006) 1266-1273. https://doi.org/10.1121/1.2221557
  22. K.H. Matlack, J.-Y. Kim, L.J. Jacobs, J. Qu, Review of second harmonic generation measurement techniques for material state determination in metals, J. Nondestruct. Eval. 34 (2014) 273.
  23. A. Hikata, B.B. Chick, C. Elbaum, Dislocation contribution to the second harmonic generation of ultrasonic waves, J. Appl. Phys. 36 (1965) 229-236. https://doi.org/10.1063/1.1713881
  24. C.-S. Seok, J.-P. Kim, Studies on the correlation between mechanical properties and ultrasonic parameters of aging lCr-lMo-0.25V steel, J. Mech. Sci. Technol. 19 (2005) 487-495. https://doi.org/10.1007/BF02916171
  25. G.E. Dace, R.B. Thompson, O. Buck, Measurement of the acoustic harmonic generation for materials characterization using contact transducers, Rev. Prog. Quant. Nondestruct. Eval. 11B (1992) 2069-2076.
  26. A. Viswanath, B.P.C. Rao, S. Mahadevan, P. Parameswaran, T. Jayakumar, B. Raj, Nondestructive assessment of tensile properties of cold worked AISI type 304 stainless steel using nonlinear ultrasonic technique, J. Mater. Process. Technol. 211 (2011) 538-544. https://doi.org/10.1016/j.jmatprotec.2010.11.011
  27. R.B. Thompson, O. Buck, D.O. Thompson, Higher harmonics of finite amplitude ultrasonic waves in solids, J. Acoust. Soc. Am. 59 (1976) 1087-1094. https://doi.org/10.1121/1.380962
  28. J. Kim, D.G. Song, K.Y. Jhang, A method to estimate the absolute ultrasonic nonlinearity parameter from relative measurements, Ultrasonics 77 (2017) 197-202. https://doi.org/10.1016/j.ultras.2017.02.013
  29. C. Jang, H. Jang, S. Hong, J.G. Lee, Evaluation of the recovery of thermal aging embrittlement of CF8M cast stainless steels after reversion heat treatments, Int. J. Press. Vessel. Pip. 131 (2015) 67-74. https://doi.org/10.1016/j.ijpvp.2015.04.011
  30. H. Jang, S. Hong, C. Jang, J.G. Lee, The effects of reversion heat treatment on the recovery of thermal aging embrittlement of CF8M cast stainless steels, Mater. Des. 56 (2014) 517-521. https://doi.org/10.1016/j.matdes.2013.12.010
  31. G.O. Subramanian, B.S. Kong, H.J. Lee, C. Jang, Evaluation of the thermal aging of ${\delta}$-ferrite in austenitic stainless steel welds by electrochemical analysis, Sci. Rep. 8 (2018) 15091. https://doi.org/10.1038/s41598-018-33422-x

Cited by

  1. Characterizing Microstructural Evolution of TP304 Stainless Steel Using a Pulse-Echo Nonlinear Method vol.13, pp.6, 2020, https://doi.org/10.3390/ma13061395
  2. Optimal Design of Annular Phased Array Transducers for Material Nonlinearity Determination in Pulse–Echo Ultrasonic Testing vol.13, pp.23, 2020, https://doi.org/10.3390/ma13235565
  3. Measurement of Absolute Acoustic Nonlinearity Parameter Using Laser-Ultrasonic Detection vol.11, pp.9, 2020, https://doi.org/10.3390/app11094175