• Title/Summary/Keyword: Ultra shallow junctions

Search Result 18, Processing Time 0.033 seconds

Avalanche Phenomenon at The Ultra Shallow $N^+$-P Silicon Junctions (극히 얕은 $N^+$-P 실리콘 접합에서의 어발런치 현상)

  • Lee, Jung-Yong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.3
    • /
    • pp.47-53
    • /
    • 2007
  • Ultra thin Si p-n junctions shallower than $300{\AA}$ were fabricated and biased to the avalanche regime. The ultra thin junctions were fabricated to be parallel to the surface and exposed to the surface without $SiO_2$ layer. Those junctions emitted white light and electrons when junctions were biased in the avalanche breakdown regime. Therefore, we could observe the avalanche breakdown region visually. We could also observe the influence of electric field to the current flow visually by observing the white light which correspond to the avalanche breakdown region. Arrayed diodes emit light and electrons uniformly at the diode area. But, the reverse leakage current were larger than those of ordinary diodes, and the breakdown voltage were less than 10V.

  • PDF

A Study on IIM Process for Ultra-Shallow Cobalt Silicide Junctions (극히 얇은 코발트 실리사이드 접합을 위한 IIM 공정에 관한 연구)

  • 이석운;민경익;주승기
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.8
    • /
    • pp.89-98
    • /
    • 1992
  • IIM(Implantation Into Metal) process usning Co silicides has been investigated to obtain ultra-shallow junctions less than 0.1$\mu$m. Rapid Thermal Annealing using halogen lamps was employed to form CoSi$_2$ and junctions simultaneously.. Resistivities of CoSi$_2$ were 13-17$\mu$ $\Omega$-cm. CoSi$_2$/p$^{+}$/Si and CoSi$_2$/n$^{+}$/Si junction were formed by diffusion of B and As, respectively, from Co film. It was found out that B and As were severely lost by the evaporation during high temperature annealing Therefore SiO$_2$ capping layers were introduced to prevent the evaporation of the implanted dopants from the films. Investigation of the behavior of dopants with respect to annealing time revealed that increasing the annealing time enhanced the diffusion of dopants into Si from CoSi$_2$.

  • PDF

The study of plasma source ion implantation process for ultra shallow junctions (Ulra shallow Junctions을 위한 플라즈마 이온주입 공정 연구)

  • Lee, S.W.;Jeong, J.Y.;Park, C.S.;Hwang, I.W.;Kim, J.H.;Ji, J.Y.;Choi, J.Y.;Lee, Y.J.;Han, S.H.;Kim, K.M.;Lee, W.J.;Rha, S.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.111-111
    • /
    • 2007
  • Further scaling the semiconductor devices down to low dozens of nanometer needs the extremely shallow depth in junction and the intentional counter-doping in the silicon gate. Conventional ion beam ion implantation has some disadvantages and limitations for the future applications. In order to solve them, therefore, plasma source ion implantation technique has been considered as a promising new method for the high throughputs at low energy and the fabrication of the ultra-shallow junctions. In this paper, we study about the effects of DC bias and base pressure as a process parameter. The diluted mixture gas (5% $PH_3/H_2$) was used as a precursor source and chamber is used for vacuum pressure conditions. After ion doping into the Si wafer(100), the samples were annealed via rapid thermal annealing, of which annealed temperature ranges above the $950^{\circ}C$. The junction depth, calculated at dose level of $1{\times}10^{18}/cm^3$, was measured by secondary ion mass spectroscopy(SIMS) and sheet resistance by contact and non-contact mode. Surface morphology of samples was analyzed by scanning electron microscopy. As a result, we could accomplish the process conditions better than in advance.

  • PDF

Implementation of Electrochemical Methods for Metrology and Analysis of Nano Electronic Structures of Deep Trench DRAM

  • Zeru, Tadios Tesfu;Schroth, Stephan;Kuecher, Peter
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.2
    • /
    • pp.219-229
    • /
    • 2012
  • In the course of feasibility study the necessity of implementing electrochemical methods as an inline metrology technique to characterize semiconductor nano structures for a Deep Trench Dynamic Random Access Memory (DT-DRAM) (e.g. ultra shallow junctions USJ) was discussed. Hereby, the state of the art semiconductor technology on the advantages and disadvantages of the most recently used analytical techniques for characterization of nano electronic devices are mentioned. Various electrochemical methods, their measure relationship and correlations to physical quantities are explained. The most important issue of this paper is to prove the novel usefulness of the electrochemical micro cell in the semiconductor industry.

Formation of ultra-shallow $p^+-n$ junction through the control of ion implantation-induced defects in silicon substrate (이온 주입 공정시 발생한 실리콘 내 결함의 제어를 통한 $p^+-n$ 초 저접합 형성 방법)

  • 이길호;김종철
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.4
    • /
    • pp.326-336
    • /
    • 1997
  • From the concept that the ion implantation-induced defect is one of the major factors in determining source/drain junction characteristics, high quality ultra-shallow $p^+$-n junctions were formed through the control of ion implantation-induced defects in silicon substrate. In conventional process of the junction formation. $p^+$ source/drain junctions have been formed by $^{49}BF_2^+$ ion implantation followed by the deposition of TEOS(Tetra-Ethyl-Ortho-Silicate) and BPSG(Boro-Phospho-Silicate-Glass) films and subsequent furnace annealing for BPSG reflow. Instead of the conventional process, we proposed a series of new processes for shallow junction formation, which includes the additional low temperature RTA prior to furnace annealing, $^{49}BF_2^+/^{11}B^+$ mixed ion implantation, and the screen oxide removal after ion implantation and subsequent deposition of MTO (Medium Temperature CVD oxide) as an interlayer dielectric. These processes were suggested to enhance the removal of ion implantation-induced defects, resulting in forming high quality shallow junctions.

  • PDF

Electrical properties of Ultra-Shallow Junction formed by using Epitaxial $CoSi_{2}$ Thin Film as Diffusion Source ($CoSi_{2}$ 에피박막을 확산원으로 이용하여 형성한 매우 얇은 접합의 전기적 특성)

  • Koo, Bon-Cheol;Shim, Hyun-Sang;Jung, Yun-Sil;Bae, Kyoo-Sik
    • Korean Journal of Materials Research
    • /
    • v.8 no.5
    • /
    • pp.470-473
    • /
    • 1998
  • $As^+$ was ion-implanted onto $CoSi_{2}$ thin films formed by rapidly thermal-annealed Co/Ti bilayers. Then the specimens were drive-in annealed at 500~100$0^{\circ}C$ to form ultra-shallow $n^+$p junction diodes and to measure their 1- V characteristics. When drive-in annealed at 50$0^{\circ}C$ for 280 sec., 50 nm thick ultra-shallow junctions were formed and di¬odes showed the best 1- V characteristics with low leakage current. In particular. the leakage current was 2 orders lower than that of diodes formed by using Co monolayer. It was attributed to uniform $CoSi_{2}$/Si interfaces.

  • PDF

Molecular Dynamics (MD) Simulation of Ultra-shallow Ion Implantation with a Modified Recoil Ion Approximation

  • Ohseob Kwon;Kim, Kidong;Jihyun Seo;Taeyoung Won
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.735-738
    • /
    • 2003
  • In this paper, we report a molecular dynamics (MD) simulation of the ion implantation for nano-scale devices with ultra-shallow junctions. In order to model the profile of ion distribution in nanometer scale, the molecular dynamics with a damage model has been employed. As an exemplary case, we calculate the dopant profile during the ion implantation of B, As, and Ge.

  • PDF

Electrical Properties of Ultra-shallow$p^+-n$ Junctions using $B_{10}H_{14}$ ion Implantation ($B_{10}H_{14}$ 이온 주입을 통한 ultra-shallow $p^+-n$ junction 형성 및 전기적 특성)

  • 송재훈;김지수;임성일;전기영;최덕균;최원국
    • Journal of the Korean Vacuum Society
    • /
    • v.11 no.3
    • /
    • pp.151-158
    • /
    • 2002
  • Fabricated were ultra-shallow $p^+-n$ junctions on n-type Si(100) substrates using decaborane $(B_{10}H_{14})$ ion implantation. Decaborane ions were implanted at the acceleration voltages of 5 kV to 10 kV and at the dosages of $1\times10^{12}\textrm{cm}^2$.The implanted specimens were annealed at $800^{\circ}C$, $900^{\circ}C$ and $1000^{\circ}C$ for 10 s in $N_2$ atmosphere through a rapid thermal process. From the measurement of the implantation-induced damages through $2MeV^4 He^{2+}$ channeling spectra, the implanted specimen at the acceleration voltage of 15 kV showed higher backscattering yield than those of the bare n-type Si wafer and the implanted specimens at 5 kV and 10 kV. From the channeling spectra, the calculated thicknesses of amorphous layers induced by the ioin implantation at the acceleration voltages of 5 kV, 10 kV and 15 kV were 1.9 nm, 2.5 nm and 4.3 nm, respectively. After annealing at $800^{\circ}C$ for 10 s in $N_2$ atmosphere, most implantation-induced damages of the specimens implanted at the acceleration voltage of 10 kV were recovered and they exhibited the same channeling yield as the bare Si wafer. In this case, the calculated thickness of the amorphous layer was 0.98 nm. Hall measurements and sheet resistance measurements showed that the dopant activation increased with implantation energy, ion dosage and annealing temperature. From the current-voltage measurement, it is observed that leakage current density is decreased with the increase of annealing temperature and implantation energy.