• Title/Summary/Keyword: Ultra sensitive

Search Result 151, Processing Time 0.029 seconds

AE Signal Analysis of Yttria($Y_2O_3$) Ceramic Lapping Process (이트리아($Y_2O_3$) 세라믹 래핑가공의 AE 신호 분석)

  • Cha, Ji-Wan;Hwang, Sung-Chul;Shin, Tae-Hee;Lee, Eun-Sang
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.1
    • /
    • pp.7-14
    • /
    • 2010
  • AE(acoustic emission) sensor has been used for a state monitoring and observation during a ultra-precision machining because AE signal, which has high frequency range, is sensitive enough. In case of ceramic fabrication, a monitoring of machining state is important because of its hard and brittle nature. A machining characteristic of ceramic is susceptibly different in accordance with variable machining conditions. In this study, Yttria($Y_2O_3$) ceramic was fabricated using the ultra-precision lapping process with in-process electrolytic dressing(IED) method. And the surface machining characteristic and AE sensor signal were compared and analyzed.

A micromachined cantilever for chemically sensitive scanning force microscope applications (화학적 성분 분석능력을 가진 원자 현미경의 제작)

  • Lee, Dong-Weon
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.1-6
    • /
    • 2005
  • This paper describes a novel concept of a chemically sensitive scanning force microscope (CS-SFM). It consists of the conventional SFM and the time-of-flight mass spectrometer (TOF-MS). A switchable cantilever (SC) fabricated by the micromachining technology combines each advantage of two completely different systems, SFM and TOF-MS. The CS-SFM offers to produce both images of topography and chemical information simultaneously. First we employed a rotatable tip holder based on 4 piezotube actuators for demonstration of the possibility of the CS-SFM concept. Second the CS-SFM concept is optimized with the micromachining technology. The micromachined SC with an integrated bimorph actuator and a piezoresistive strain sensor provides a reasonable switching speed of ${\sim}10$ ms which is very attractive for the CS-SFM application. The SC is currently being integrated in an ultra-high-vacuum system to perform various experiments.

Electrical and Optical Propeties of a UV-Sensitive CCD Imager

  • Kim, Man-Ho;Choi, Jae-Ha
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.4
    • /
    • pp.518-524
    • /
    • 2007
  • This paper describes several improved characterizations of the EPIC CCD, which now has modified electrode and channel structures. From a 3-D numerical simulation of the device, its channel doping and potential distributions are then observed for the optimization of the charge transfer. A wavelength-dependence on the device structure is observed in terms of the reflectivity of the incident radiation. The optical properties of ultra-low energy levels, when using an open-electrode structure, are then considered to improve their quantum efficiency.

Development of charge sensitive amplifiers based on various circuit board substrates and evaluation of radiation hardness characteristics

  • Jeong, Manhee;Kim, Geehyun
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1503-1510
    • /
    • 2020
  • Ultra-low noise charge sensitive amplifiers (CSAs) based on various types of circuit board substrates, such as FR4, Teflon, and ceramics (Al2O3) with two different designs, PA1 and PA2, have been developed. They were tested to see the noise effect from the dielectric loss of the substrate capacitance before and after irradiation. If the electronic noise from the CSAs is to be minimized and the energy resolution enhanced, the shaping time has to be optimized for the detector, and a small feedback capacitance of the CSA is favorable for a better SNR. Teflon- and ceramic-based PA1 design CSAs showed better noise performance than the FR4-based one, but the Teflon-based PA1 design showed better sensitivity than ceramic based one at a low detector capacitance (<10 pF). In the PA2 design, the equivalent noise and the sensitivity were 0.52 keV FWHM for a silicon detector and 7.2 mV/fC, respectively, with 2 ㎲ peaking time and 0.1 pF detector capacitance. After 10, 100, 103, 104, and 105 Gy irradiation the ENC and sensitivity characteristics of the developed CSAs based on three different substrate materials are also discussed.

Design of High Sensitive Broadband Tag Antenna for RFID System in UHF Band (UHF 대역 RFID 시스템용 고감도 광대역 태그 안테나의 설계)

  • Park, Gun-Do;Min, Kyeong-Sik
    • Journal of Navigation and Port Research
    • /
    • v.33 no.1
    • /
    • pp.51-56
    • /
    • 2009
  • This paper presents the design of high sensitive/broadband tag antenna for Radio Frequency Identification (RFID) in Ultra High Frequency(UHF) band. A proposed tag antenna size is $60\;mm\;{\times}\;10\;mm\;{\times}\;1\;mm$. The resonant frequency is 910MHz and bandwidth is about 900 MHz at -10 dB below. The measured return loss and directional pattern have been confirmed a good agreement with the calculation results. The read range of proposed tag antenna with chip is observed about 6.5 m and proposed tag antenna has been observed an average 0.5 m for more than read range of the commercial tag antenna.

Sensitive determination of pendimethalin and dinoseb in environmental water by ultra performance liquid chromatography-tandem mass spectrometry

  • Lim, Hyun-Hee;Park, Tae-Jin;Lee, Soo-Hyung;Shin, Ho-Sang
    • Analytical Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.194-204
    • /
    • 2017
  • Direct injection (DI) and solid phase extraction (SPE) methods for the simultaneous determination of pendimethalin (PDM) and dinoseb (DNS) in environmental water have been optimized using the ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method. The limits of quantification (LOQs) of PDM and DNS were $0.01{\mu}g/L$ using the DI method and $0.0001-0.0002{\mu}g/L$ using the SPE method. The precision by SPE UPLC-MS/MS was less than 11 % for intra-day and inter-day analyses. When the proposed SPE method was used to analyze two analytes in environmental water, PDM was detected in a concentration range of $0.0002-0.011{\mu}g/L$ in 31 samples of the 114 surface water samples, and DNS was detected in a concentration range of $0.0005-0.045{\mu}g/L$ in 17 samples of the 114 surface water samples analyzed. When the DI method was used to analyze target compounds in the same samples, the detected concentrations of the two analytes were within 21% in samples with concentrations above $0.01{\mu}g/L$. The DI UPLC-MS/MS method can thus be used for the routine monitoring of PDM and DNS in environmental water, and the SPE LC-MS/MS method can be used for the determination of the ultra-trace PDM and DNS residues in environmental water.

The rapid determination of PAHs in foods using ultra high performance liquid chromatography (UHPLC를 이용한 식품 중의 PAHs 신속분석법)

  • Ha, Jae-Ho;Shin, Dong-Bin;Hwang, Jin-Bong;Seo, Hye-Young;Ito, Masahito;Nakagawa, Hiroaki
    • Analytical Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.266-274
    • /
    • 2011
  • Using a Hitachi LaChrom Ultra 2000U, a reverse phase ultra high performance liquid chromatography (u-HPLC) method was developed for the rapid quantification of 14 PAHs in foods. The proposed method for PAH analysis is based on solid phase extraction (SPE) cartridges; the determination was carried out by u-HPLC with fluorimetric detection. The method was very sensitive; PAH concentration levels were in a low ${\mu}g$/kg range and could be detected and quantified. Six samples of food were analyzed. Among PAHs, PHE was found in most of samples, the concentration ranging from 2.5 to 19.9 ${\mu}g$/kg. The contents of benzo[c]fluorine (BCL), pyrene (PYR), benzo[a]anthracene (BaA), chrysene (CHR), benzo[b]fluoranthene (BbF), benzo[k]fluoranthene (BkF) were low at the '${\mu}g$/kg' level or were less than LOD.

A sensor controller for map building of home service robot using low cost PSD sensor (저가형 PSD센서를 이용한 홈서비스 로봇의 Map building용 센서 제어시스템)

  • Hyun, Wong-Keun;Lee, Chang-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.10
    • /
    • pp.1897-1904
    • /
    • 2006
  • Home service robot must recognize and build map for indoor and components of the house such as furniture and chair etc. The previous researcher has developed a indoor map building system by using CCD camera and ultra sonic sensor. %no stems have some problem in such a way that (1) a distun resolution can be changed according to the number of pixel when we use a CCD camera system, (2) a measured distance can be decreased when it transmitted to the rubber because of being absorbed the sound energy. This paper represents an intelligent sensor controller of module has been developed by using optic PSD(Position Sensitive Detector) sensor any at a low price. To deduce the switching noise from beam power module and diffused reflection noise, we proposed a heuristic soft filter. The performance of the developed system was compared with ultra sonic sensor system by detecting the indoor wall environment. Some experiments were illustrated for the validity of the developed system.

Ultra-rapid Real-time PCR for the Detection of Tomato yellow leaf curl virus (초고속 Real-time PCR을 이용한 Tomato yellow leaf curl virus의 신속진단)

  • Kim, Tack-Soo;Choi, Seung-Kook;Ko, Min-Jung;Lee, Minho;Choi, Hyung Seok;Lee, Se-Weon;Park, Kyungseok;Park, Jin-Woo
    • Research in Plant Disease
    • /
    • v.18 no.4
    • /
    • pp.298-303
    • /
    • 2012
  • Tomato yellow leaf curl virus (TYLCV), transmitted exclusively by the whitefly (Bemisia tabaci) in a circulative manner is one of the most important virus in tomato. Since the first report of TYLCV incidence in Korea in 2008, the virus has rapidly spread nationwide. TYLCV currently causes serious economic losses in tomato production in Korea. Early detection of TYLCV is one of the most important methods to allow rouging of infected tomato plants to minimize the spread of TYLCV disease. We have developed an ultra-rapid and sensitive real-time polymerase chain reaction (PCR) using a new designed real-time PCR system, GenSpectorTM TMC-1000 that is a small and portable real-time PCR machine requiring only a $5{\mu}l$ reaction volume on microchips. The new system provides ultra-high speed reaction (30 cycles in less than 15 minutes) and melting curve analysis for amplified TYLCV products. These results suggest that the short reaction time and ultra sensitivity of the GenSpector$^{TM}$-based real-time PCR technique is suitable for monitoring epidemics and pre-pandemic TYLCV disease. This is the first report for plant virus detection using an ultra-rapid real-time PCR system.

Nanoplasmonics: Enabling Platform for Integrated Photonics and Sensing

  • Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.75-75
    • /
    • 2015
  • Strong interactions between electromagnetic radiation and electrons at metallic interfaces or in metallic nanostructures lead to resonant oscillations called surface plasmon resonance with fascinating properties: light confinement in subwavelength dimensions and enhancement of optical near fields, just to name a few [1,2]. By utilizing the properties enabled by geometry dependent localization of surface plasmons, metal photonics or plasmonics offers a promise of enabling novel photonic components and systems for integrated photonics or sensing applications [3-5]. The versatility of the nanoplasmonic platform is described in this talk on three folds: our findings on an enhanced ultracompact photodetector based on nanoridge plasmonics for photonic integrated circuit applications [3], a colorimetric sensing of miRNA based on a nanoplasmonic core-satellite assembly for label-free and on-chip sensing applications [4], and a controlled fabrication of plasmonic nanostructures on a flexible substrate based on a transfer printing process for ultra-sensitive and noise free flexible bio-sensing applications [5]. For integrated photonics, nanoplasmonics offers interesting opportunities providing the material and dimensional compatibility with ultra-small silicon electronics and the integrative functionality using hybrid photonic and electronic nanostructures. For sensing applications, remarkable changes in scattering colors stemming from a plasmonic coupling effect of gold nanoplasmonic particles have been utilized to demonstrate a detection of microRNAs at the femtomolar level with selectivity. As top-down or bottom-up fabrication of such nanoscale structures is limited to more conventional substrates, we have approached the controlled fabrication of highly ordered nanostructures using a transfer printing of pre-functionalized nanodisks on flexible substrates for more enabling applications of nanoplasmonics.

  • PDF