Browse > Article
http://dx.doi.org/10.5423/RPD.2012.18.4.298

Ultra-rapid Real-time PCR for the Detection of Tomato yellow leaf curl virus  

Kim, Tack-Soo (Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration)
Choi, Seung-Kook (Horticultural and Herbal Crop Environment Division, National Institute of Horticultural and Herbal Science, Rural Development Administration)
Ko, Min-Jung (Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration)
Lee, Minho (Organic Agriculture Division, National Academy of Agricultural Science, Rural Development Administration)
Choi, Hyung Seok (Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration)
Lee, Se-Weon (Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration)
Park, Kyungseok (Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration)
Park, Jin-Woo (Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration)
Publication Information
Research in Plant Disease / v.18, no.4, 2012 , pp. 298-303 More about this Journal
Abstract
Tomato yellow leaf curl virus (TYLCV), transmitted exclusively by the whitefly (Bemisia tabaci) in a circulative manner is one of the most important virus in tomato. Since the first report of TYLCV incidence in Korea in 2008, the virus has rapidly spread nationwide. TYLCV currently causes serious economic losses in tomato production in Korea. Early detection of TYLCV is one of the most important methods to allow rouging of infected tomato plants to minimize the spread of TYLCV disease. We have developed an ultra-rapid and sensitive real-time polymerase chain reaction (PCR) using a new designed real-time PCR system, GenSpectorTM TMC-1000 that is a small and portable real-time PCR machine requiring only a $5{\mu}l$ reaction volume on microchips. The new system provides ultra-high speed reaction (30 cycles in less than 15 minutes) and melting curve analysis for amplified TYLCV products. These results suggest that the short reaction time and ultra sensitivity of the GenSpector$^{TM}$-based real-time PCR technique is suitable for monitoring epidemics and pre-pandemic TYLCV disease. This is the first report for plant virus detection using an ultra-rapid real-time PCR system.
Keywords
Tomato yellow leaf curl virus (TYLCV); Ultra-rapid real-time PCR;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Cho, J. D., Kim, J. S., Kim, H. R., Chung, B. N. and Ryu, K. H. 2006. Convenient nucleic acid detection for Tomato spotted wilt virus: virion captured/RT-PCR (VC/RT-PCR). Res. Plant Dis. 12: 139-143. (In Korean)   DOI
2 Cho, J. D., Kim, T. S., Kim, J. H., Choi, G. S., Chung, B. N., Choi, H. S. and Kim, J. S. 2008. Convenient virion capture (VC)/ PCR for Tomato yellow leaf curl geminivirus occurring on Tomato in Korea. Res. Plant Dis. 14: 233-237. (In Korean)   DOI
3 Cho, Y. K., Kim, J., Lee, Y., Kim, Y. A., Namkoong, K., Lim, H., Oh, K. W., Kim, S., Han, J., Park, C., Pak, Y. E., Ki, C. S., Choi, J. R., Myeong, H. K. and Ko, C. 2006. Clinical evaluation of micro-scale chip-based PCR system for rapid detection of hepatitis B virus. Biosens. Bioelectron. 21: 2161-2169.   DOI
4 deMello, A. J. 2003. Microfluidics: DNA amplication moves on. Nature 422: 28-29.   DOI
5 Hanssen, I. M., Lapidot, M. and Thomma, P. H. J. 2010. Emerging viral diseases of tomato crops. MPMI 23: 539-548.   DOI
6 Kim, E. H., Lee, D. W., Han, S. H., Kwon, S. H. and Yoon, B. S. 2007. Rapid detection of avian influenza subtype H5N1 using quick real-time PCR. Korean J. Microbiol. 43: 23-30. (In Korean)
7 Kim, J. S., Lee, S. H., Choi, H. S., Kim, M. K., Kwak, H. R., Cho, J. D., Choi, G. S. and Kim, J. Y. 2009. Occurrence of virus diseases on major corps in 2008. Res. Plant Dis. 15: 1-7. (In Korean)   DOI
8 Kim, J. S., Lee, S. H., Choi, H. S., Kim, M. K., Kwak, H. R., Nam, M., Kim, J. S., Choi, G. S., Cho, J. D., Cho, I. S. and Chung, B. N. 2011. Occurrence of virus disease on major crops in 2010. Res. Plant Dis. 17: 334-341. (In Korean)   DOI   ScienceOn
9 Kwak, H. R., Kim, M. K., Lee, G. S., Kim, C. S., Kim, M. J., Kim, J. D., Lee, S. H., Kim, J. S., Lee, S. C. and Choi, H. S. 2008. Molecular characterization of Tomato yellow leaf curl virus (TYLCV) isolated firstly in Korea. Res. Plant Dis. 24: 238. (In Korean)
10 Lee, D. W., Kim, E. H., Yoo, M. S., Han, S. H. and Yoon, B. S. 2007. Ultra-rapid real-time PCR for the detection of human immunodeficiency virus (HIV). Korean J. Microbiol. 43: 91-99. (In Korean)
11 Navas-Castillo, J., Fiallo-Olive, E. and Sanchez-Campos, S. 2011. Emerging virus diseases transmitted by whiteflies. Annu. Rev. Phytopathol. 49: 219-248.   DOI   ScienceOn
12 Ohnishi, J., Kitamura, T., Terami, F. and Ken-ichiro, H. 2009. A selective barrier in the midgut epithelial cell membrane of the nonvector whitefly Trialeurodes vaporariorum to Tomato yellow leaf curl virus uptake. J. Gen. Plant Pathol. 75: 131-139.   DOI
13 Papayiannis, L. C., Iacovides, T. A., Katis, N. I. and Brown, J. K. 2010. Differentiation of Tomato yellow leaf curl virus and Tomato yellow leaf curl Sardinia virus using real-time $TaqMan^{(R)}$ PCR. J. Virol. Methods 165: 238-245.   DOI
14 Sinisterra, X. H., McKenzie, C. L., Hunter, W. B., Powell, C. A. and Shatters, Jr. R. G. 2005. Differential transcriptional activity of plant-pathogenic begomoviruses in their whitefly vector (Bemisia tabaci, Gennadius: Hemiptera Aleyrodidae). J. Gen. Virol. 86: 1525-1532.   DOI
15 Yoo, M. S., Thi, K. C. N., Nguyen, P. V., Han, S. H., Kwon, S. H. and Yoon, B. S. 2012. Rapid detection of sacbrood virus in honeybee using ultra-rapid real-time polymerase chain reaction. J. Virol. Methods 179: 195-200.   DOI
16 Yoon, D. S., Lee, Y. S., Cho, H. J., Sung, S. W., Oh, K. W., Cha, J. H. and Lim, G. B. 2002. Precise temperature control and rapid thermal cycling in a micro machined DNA polymerase chain reaction chip. J. Micromech. Microeng. 12: 813-823.   DOI