• Title/Summary/Keyword: Two-link robot arm

Search Result 17, Processing Time 0.023 seconds

Regulation Control of Two-Link Robot Arm with the Input Constraint using Sum of Squares Method (SOS 제어기법을 이용한 입력제한이 있는 2관절 로봇팔의 조정제어)

  • Jeong, Jin-Gang;Chwa, Dongkyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.7
    • /
    • pp.1270-1276
    • /
    • 2016
  • This paper proposes the controller design for regulation control of two-link robot arm using sum of squares (SOS) control method that takes into account the input constraint. The existing studies of two link robotic arm system used a linear model of all the non-linearity of the system is linearized. For a linear controller, since the model of the system is simplified, it is possible to design a controller in consideration of constraints on the disturbance. However, there is a limit to the performance using a linearized model for a system with a complex nonlinear properties. To compensate for this in the case of using a fuzzy LMI method, it is necessary to have a large number of linear models and thus there is a disadvantage that the system becomes complicated. To solve these problems, we represents a two-link robot arm system with a polynomial model using a Taylor series expansion and design the controller considering the case where the magnitude of the control input is limited using SOS method. We demonstrate by simulations the feasibility of the proposed algorithm.

A study on the development of the light weight robot arm using pneumatic rubber actuator (공압식 러버 액츄에이터를 사용한 경량 로봇 팔의 제작에 관한 연구)

  • 김연호;정명진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.523-527
    • /
    • 1991
  • A rubber pneumatic controlled actuator is a new actuator. It is very light With a high power-to-weight ratio. In this thesis, a control method for a two link robot arm using the rubber actuator is developed. The structure of the servo control is made up of two sections. The position control is performed by PID feedback control. The air pressure is controlled by Servo Valve Unit driven by PWM and the control input is compensated by software operation. The numerical simulation of this control method to two link robot arm is presented to verify the performance of the closed loop system. The actual control of the real two link robot arm with rubber actuator is taken and its results are discussed.

  • PDF

Adaptive control for two-link flexible robot arm (2-링크 유연한 로보트 팔에 대한 적응제어)

  • 한종길;유병국;임규만;함운철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.8-13
    • /
    • 1993
  • This paper presents deterministic and adaptive control laws for two-link flexible arm. The flexible arm has considerable structural flexibility. Because of its flexbility, dynamic equations are very complex and difficult to get, dynamic equations for two-link flexible arm are derived from Bernoulli-Euler beam theory and Lagrangian equation. Using the fact that matrix is skew symmetric, controllers which have a simplified structure with less computational burden are proposed by using Lyapunov stability theory.

  • PDF

Position and Vibration Control of Flexible 2-Link Robot Arm Using Piezoelectric Actuators and Sensors (압전 작동기 및 감지기를 이용한 유연한 2링크 로봇팔의 위치 및 진동제어)

  • Sin, Ho-Cheol;Choe, Seung-Bok;Kim, Seung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.206-212
    • /
    • 2000
  • This paper presents a hybrid actuator scheme to actively control the end-point position and vibration of a two-link flexible robot arm. Control scheme consists of four different actuators; two servo-motors at the hubs and two piezoceramics bonded to the surfaces of the flexible links. Two sliding hyperplanes are designed for two servo-motors which have time varying parameters to maintain control performance in any configuration. The surface gradients of the hyperplanes are determined by pole assignment technique to guarantee the stability on the hyperplanes themselves. During the motion, undesirable oscillations caused by the torques based on the rigid link dynamics are actively suppressed by applying feedback control voltages to the piezoceramic actuators. Consequently, desired tip motion is achieved. In order to demonstrate the effectiveness of the proposed methodology, experiments are performed for the regulating and tracking control problems.

  • PDF

Dynamic Characteristics and Control of Two-Link Arm with Free Joint (자유관절을 가진 2링크 암의 동특성과 제어)

  • 유기호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.216-223
    • /
    • 2000
  • A robot arm with free joints has some advantages over conventional ones. A light weight and low power consumed arm can be made by a reduction of the number of joint actuators. And this arm can easily overcomes actuator failure due to unexpected accident. In general such underactuated arm does not have controllability because of the lack of joint actuators. The two-link arm with a free joint introduced in this paper is also uncontrollable in the sense of linear system theory. However, the linearized system sometimes can not represent the inherent dynamic behavior of the nonlinear system. In this paper the dynamic characteristics of the two-link arm with a free joint in view of global motion including damping and friction effect of the joints is investigated. In the case of considering only the damping effect, the controllable goal positions are confined to a specific trajectories. But in the case of considering the friction effect, the system can be controlled to arbitrary positions using the friction of the free joint as a holding brake. Also numerical example of position control is presented.

  • PDF

The Control of Flexible Robot Arm using Adaptive Control Theory (적응제어 이론을 이용한 유연한 로봇팔의 제어)

  • Han, Jong-Kil
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.5
    • /
    • pp.1139-1144
    • /
    • 2012
  • The ration of payload to weight of industrial robot amounts form 1:10 to 1:30. Compared with man who have a ration of 3:1, it is very low. One of the goals for the next generation of robots will be a ration. This might be possible only by developing lightweight robots. When two-link flexible arm is rotated about an joint axis, transverse vibration may occur. In this paper, vibration dynamics of flexible arm is modeled by using Bernoulli-Euler beam theory and Lagrange equation. Using the fact that matrix $\dot{D}-2C$ is skew symmetric, new controllers which have a simplified structure with less computational burden is proposed by using Lyapunov stability theory. We propose deterministic and adaptive control laws for two link flexible arm, and the validity of the proposed control scheme is shown in computer simulation for two-link flexible arm.

Deterministic Nonlinear Control of Two-Link Flexible Arm (2관절 유연한 로봇 팔에 대한 비선형 제어)

  • Han, Jong-Kil;Son, Yong-Su
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.4 no.3
    • /
    • pp.236-242
    • /
    • 2009
  • When two-link flexible arm is rotated about an joint axis, transverse vibration may occur. In this paper, vibration dynamics of flexible robot arm is modeled by using Bernoulli-Euler beam theory and Lagrange equation. Using the fact that matrix $\dot{D}$-2C is skew symmetric, new controllers which have a simplified structure with less computational burden is proposed. Lyapunov stability theory is applied to achieve a stable deterministic nonlinear controller for the regulation of joint angle.

  • PDF

A Study on the Position Control of the parallelogram link DD Robot Using Neural Network (신경회로망을 이용한 평행링크 DD로봇의 위치제어)

  • 김성대
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.3
    • /
    • pp.64-71
    • /
    • 1999
  • In this paper, two degree of freedom parallelogram link mechanism is used as DD(Direct-drive) robot mechanism. In parallelogram link mechanism, two motors being established in each base frame, the mass of motor itself is not loaded to anther motor; the number of links are increased, the mass of arm being lighter; with the estabilishment of link parameter, nonlinearity such as the centrifugal force disappears; at the same time anti-interference between motors can be realized. And to realize highy-accurate drive of parallelogram link DD robot manipulator, to improve the learning speed through the design of leaning control system using neural network, to raise adapting power to the varied work objects; the learning control algorithm is composed of neural network and feedback controller in this paper.

  • PDF

Wireless Interface of Motion between Human and Robot

  • Jung, Seul;Jeon, Poong-Woo;Cho, Hyun-Taek;Jang, Pyung-Soo;Cho, Ki-Ho;Kim, Jeong-Gu;Song, Duck-Hee;Choi, Young-Kwon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.59.4-59
    • /
    • 2001
  • In this paper, wireless interface of the motion between human and robot is implemented. The idea is that if a human who is equiped with device including accelerometer and rate-gyro sensor move his/her arm, then the robot follows human motion. The robot is designed as wheeled type mobile robot with two link arms. The robot´s basic movements such as forward, backward, left, right movement can be controlled from foot sensor which human steps on. Arm movements can be controlled by arm motion of human motion. In order to detect human motion, sensor data analysis from gyro and accelerometer has to be done. Data from sensors are transferred through wireless communication to activate the robot.

  • PDF

Position Control of a One-Link Flexible Arm Using Multi-Layer Neural Network (다층 신경회로망을 이용한 유연성 로보트팔의 위치제어)

  • 김병섭;심귀보;이홍기;전홍태
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.1
    • /
    • pp.58-66
    • /
    • 1992
  • This paper proposes a neuro-controller for position control of one-link flexible robot arm. Basically the controller consists of a multi-layer neural network and a conventional PD controller. Two controller are parallelly connected. Neural network is traind by the conventional error back propagation learning rules. During learning period, the weights of neural network are adjusted to minimize the position error between the desired hub angle and the actual one. Finally the effectiveness of the proposed approach will be demonstrated by computer simulation.

  • PDF