• Title/Summary/Keyword: Two-link manipulator

Search Result 128, Processing Time 0.034 seconds

A trajectory plannings avoiding structural local minimum problem in robot path planning using potential field (전위장을 이용한 로봇 경로계획의 구조적 Local minimum을 극복하는 경로계획 방법)

  • Nam, Heon-Seong;Lee, Ji-Hong;Lyou, Joon
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.9
    • /
    • pp.13-23
    • /
    • 1996
  • When artificial potential field approach is used to avoid obstacle, the problem can be occurred in case that manipulator selects the path which across over an obstacle among paths. In thiscase manipulator can't reach the desired goal form obstacle. This problem is a case of structual local minimum. so this paper proposes the method to solve structual local minimum in this case. The method is that the manipulator goes via temporary goal. This paper proposes that visual region concept to select the temporary goal. The temporary goal is selected on the border of the visual region. To prove its effectiveness, two simulation examples are done by two link manipulator in two dimension and by three link manipulator in three dimension.

  • PDF

Robust QFT(Quantitative Feedback Theory) Controller Design of Parallel Link (평행링크 매니퓰레이터의 강인한 QFT(Quantitative Feedback Theory)제어기 설계)

  • Kang, Min-Goo;Byun, Gi-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2249-2251
    • /
    • 2001
  • This paper proposes that it minimizes interference between link at high speed trajectory tracking of 2-degree parallel link manipulator and QFT(Quantitative Feedback Theory) controller which robust structure uncertainty and disturbance of plant. And using ICD(Individual Channel Design), it separates two channel from multivariable system, parallel link manipulator and designs robust controller with applying MISO QFT to each channel. Finally, we make sure of robustness and excellence of QFT controller through simulation and experiment.

  • PDF

A Study on the Modeling and Control of a Flexible One-Link Manipulator Moving in a Vertical Plane (수직면에서 회전운동 하는 단일 탄성링크를 가지는 매니퓰레이터의 모델링과 제어에 관한 연구)

  • Kim, Jongdae;Oh, Seokhyung;Kim, Kiho;Oh, Chaeyoun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.11
    • /
    • pp.132-142
    • /
    • 1996
  • This paper presents a technique to model and control a manipulator which has a flexible link and moves in a vertical plane. The flexible link is modeled as an Euler-Bernoulli Beam. Elastic deformation of the flexible link is represented using the assumed modes method. A comparison function which satisfies all geometric and natural boundary conditions of a cantilever beam with an end mass is used as an assumed mode shape. Lagrange's equation is utilized for the development of a discretized model. This paper presents a simple technique to improve the correctness of the developed model. The final model including the shortening effect due to elastic deformation correlates very well with experimental results. The free body motion simulation shows that two assumed modes for the representation of the elastic deformation is proper in terms of the model size and correctness. A control algorithm is developed using PID control technique. The proportional, integral and derivative control gains are determined based on dominant pole placement method with a rigid one-link manipulator. A position control simulation shows that the control algorithm can be used to control the position and residual oscillation of the flexible one-link manipulator effectively.

  • PDF

Design and control of two-link flexible manipulators (2개의 유연한 링크를 갖는 매니퓰레이터의 설계 및 제어)

  • 정주노;정완균;염영일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.383-386
    • /
    • 1996
  • In this paper, we propose a design method and control law for plannar type two-link flexible manipulator. In designing flexible links, we use Rayleigh's principle. To control flexible manipulator, input distribution controller is used, which is primarily on the basis of nonlinear variable structure control(VSC). The simulation results are also shown.

  • PDF

Trajectory Tracking Control for a Robot Manipulator with Artificial Muscles (인공 고무 근욱을 이용한 로부트 매니퓨레이터의 궤도 추적 제어)

  • Jin, Sang-Ho
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.3
    • /
    • pp.485-492
    • /
    • 1994
  • Trajectory tracking control porblems are described for a two-link robot manipulator with artificial rubber muscle actuators. Under the assumption that the so-called independent joint control is applied to the control system, the dynamic model for each link is identified as a linear second-order system with time-lag by the step response. Two control laws such as the feedforward and the computed torque control methods, are experimentally applied for controlling the circular trajectory of an actual robot mainpulator.

  • PDF

A Study on Position and Force Control of A Robot Manipulator with Artificial Rubber Muscle (고무인공근 로보트 매니퓨레이터의 위치 및 힘 제어에 관한 연구)

  • Jin, Sang-Ho;Watanabe, Keigo;Lee, Suck-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.1
    • /
    • pp.97-103
    • /
    • 1995
  • This paper describes position and force hybrid control for a robot manipulator with artificial rubber muscle actuators. The controller using two control laws such as PID control and fuzzy logic control methods is designed. This paper concludes to show the effectiveness of the proposed controller by some experiments for a two-link manipulator.

  • PDF

Robust control of a flexible manipulator with artificial pneumatic muscle actuators (유연한 공압인공근육로봇의 강건제어)

  • 박노철;박형욱;박영필;정승호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1704-1707
    • /
    • 1997
  • In this work, position and vibratiion control of a two-link manipulator with one flexible link, which an unkoun but bounded payload mass and two pair of artificial muscle-type penumatic actuators, are investgated. A flexible link robot has advantages over a figid link robot in the sense that it is much safer when it cones into contact with its environment, including humans. Furthermore, for the sake of safety, it would be more desirabel if an actuator could deliver required force while maintaining proper compliance. An artificial muscle-type penumatic actuator is adequate for such cases. In this study, a controller based on singular perturbation method, adaptive and sliding mode contro, and .mu.-synthesis is developed. The effectiveness of the proposed control scheme is confirmed through simulations and experiments.

  • PDF

Decentralized Motion Control of Mobile Manipulator

  • Phan, Tan-Tung;Suh, Jin-Ho;Kim, Sang-Bong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1841-1846
    • /
    • 2003
  • The mobile platform-manipulator discussed in this paper is a three link manipulator mounted on a mobile platform. This mobile manipulator is used for welding operation and it is able to operate in a narrow space. The task of the torch, which is mounted at the end effector of the manipulator, is to track along the seam line and the task of the mobile platform is to move the origin point of the manipulator in order to go away from the singularity of the manipulator’s configuration. In this paper, the path planning for the motion of two subsystems (i.e., the manipulator and the mobile platform) was presented by the decentralized control method. Two controllers for the mobile platform and the manipulator were designed, and the relationship between the independent controllers is its state information. The simulation results are also presented to demonstrate the effectiveness of the control method.

  • PDF

Manipulator Path Design to Reduce the Endpoint Residual Vibration under Torque Constraints (토크 제한하에서의 첨단부 잔류진동 감소를 위한 매니퓰레이터 경로설계)

  • 박경조;박윤식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2437-2445
    • /
    • 1993
  • In this work, a new method is presented for generating the manipulator path which significantly reduces residual vibration under the torque constraints. The desired path is optimally designed so that the required movement can be achieved with minimum residual vibration. From the previous research works, the dynamic model had been established including both the link and the joint flexibilities. The performance index is selected to minimize the maximum amplitude of residual vibration. The path to be designed is developed by a combined Fourier series and polynomial function to satisfy both the convergence and boundary condition matching problems. The concept of correlation coefficients is used to select the minimum number of design variables, i.e. Fourier coefficients, the only ones which have a considerable effect on the reduction of residual vibration. A two-link Manipulator is used to evaluate this method. Results show that residual vibration can be drastically reduced by selecting an appropriate manipulator path to both of unlimited and torque-limited cases.

Control of Two-Link Manipulator Via Feedback Linearization and Constrained Model Based Predictive Control

  • Son, Won-Kee;Park, Jin-Young;Ryu, Hee-Seb;Kwon, Oh-Kyu
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.4
    • /
    • pp.221-227
    • /
    • 2000
  • This paper combines the constrained model predictive control with the feedback linearization to solve a nonlinear system control problem with input constraints. The combined approach consists of two steps: Firstly, the nonlinear model is linearized by the feedback linearization. Secondly, based on the linearized model, the constrained model predictive controller is designed taking input constraints into consideration. The proposed controller is applied to two link robot system, and tracking performances of the controller are investigated via some simulations, where the comparisons are done for the cases of unconstrained, constrained input in feedback linearization.

  • PDF