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Abstracts In this paper, we propose a design method and control law for planar type two-link flexible manipulator. In
designing flexible links, we use Rayleigh’s principle. To control flexible manipulator, input distribution controller is used ,
which is primarily on the basis of nonlinear variable structure control(VSC). The simulation results are also shown.
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1. INTRODUCTION 2. DESIGN OF TWO-LINK FLEXIBLE
MANIPULATOR

The light weight, low power consumption and safety are

main reasons for the use of flexible manipulator over rigid In the design of two-link flexible manipulator, the cross sec-
one. Some areas like space projects use flexible manipu- tional shape of each link is chosen in such a way that in
lators despite the difficulties of control to utilize the pre- moving direction, link is sufficiently flexible and in gravity
mentioned advantages. Most of the difficulties associated force direction, link is stiff enough. Different from the de-
with flexible manipulators come from the insufficient num- sign of general rigid manipulator, the object of flexible one
ber of control input to cover the motional degree of freedom is that each link should have pre-designed fundamental fre-
that consists of rigid motion and vibration due to the link ~ quency with an assumption that vibration of each link is
flexibility. Moreover, non-colocated sensing gives the sys- dominated by the fundamental mode of vibration. In this
tem non-minimum phase property which limits the control section, we will give two different methods, that is previ-
performance. Many researches have been done to find out ously known analytic formulation which is difficult to pro-
the dynamic structures of flexible manipulators and devel- ~ duce design parameters (6] and our approximate method, to
oped the control techniques and performance. However, the determine the fundamental mode of vibration of each link.
control examples are generally on the single-link flexible ma- The result of our method is confirmed by substituting to
nipulators and multi-link flexible manipulators seem to be the analytic formulation.

not so plentiful. Also, the design issue of flexible manipu-

lator has not been fully discussed. The dynamic modelings 1. ANALYTIC FORMULATION
of multi-link flexible manipulators were performed by Book
[1] and by Luca and Siciliano [6]. Cannon and Schmitz [2]
performed the initial experiment for the one-link flexible v  _0%u

robot with non-colocated sensing using end-point feedback. Elﬁ + pW =0, (1)
Cetinkunt and Yu [3] did comparative study for the closed-

. where FI, u, p and x are material rigidity, link deflection,
loop behavior of a feedback controlled flexible arm. In these o P s "g Y .
. o . mass per unit length and spatial variable, respectively. The
works, various boundary conditions and various mathemat-

. ) appropriate geometric and natural boundary conditions are
ical models are compared and verified. The method of sin- pprop & o

Let’s consider the following vibration model for each link [7]

gular perturbation approaches have been also proposed by u(0,t) = 0
Siciliano and Book [8] and Lewis and Vandegrift {4]. Luca du(0,1)
and et al[5] and W. Yim[9] addressed zero dynamic stability ot 0
of flexible manipulators and output correction. 8’u(L, ) & [ du(L.1)
In the following section, design issue of two-link flexible EIT; = “JPEt‘z‘ (T)
manipulator is considered. In section 3, we deal with general 5 )
control law to stabilize the dynamic systems which have less EIa u(L,t) Mp d—u(L )
number of control input than that of motional degree of Oz® dt? i
freedom. In section 4, the simulation results are shown and where Jp and Mp are end point moment of inertia and end
finally conclusion is given in section 5. point mass of nominal configuration. Applying the separa-

tion of variables with spatial and time function,
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(a) Physical link model (b) Mathematical link

model

2% 1: Static deflection and mechanical model with
tip mass

qt) = &
— 2
11 4 _ 4 . &
$" —p9 = 0 p'=ET (2)
The solution of Eq. (2) has the form such that
o(z) = Ci sin Br + Ca cos Bz +
Cs sinh Bz + C4 cosh Bz. 3)
If we impose the above boundary conditions, then,
Ch
=0, A=4L 4
FW[@] . A=8L @
g B

ZJT, M=M:
fJ Pp f Pp

where Fy1, Fi2, F21 and F; are, respectively

Fi; = sinA+sinhX+ fs(cos A — cosh A)
Fi; = cosA+coshA— fr(sin A+ sinh A)
Fy; = cosA+coshA— fa(sinA —sinh A)
F,; = —sinA+sinhA— fa(cosA — coshA).

The nontrivial solution for Eq. (4) will be the eigenvalues
which are directly related with natural frequency of given
system. Finally, the homogeneous frequency equation can
be obtained by

det F(A) =0,
that is,

(=2 —2f5fm) + (2f7 — 2far) cos Asinh A +
(=2+2fsfm)cosAcosh A+ (2f; + 2fum)
sin Acosh A = 0. (5)

2. APPROXIMATE METHOD

Although the above analytic method gives more precise fre-
quency information, it is difficult to solve and find out the
feasible set of link cross sectional shape. So we will give ap-
proximate method based on the Rayleigh’s principle. Fig.1
shows static deflection model of each link and for this, de-
flection y(x) is given as

y(z) = 24121 (z* — 4Le® + 6L%2%) +
F
'6—5(1‘3 - 3L£L‘2), (6)

where w and F are distributed force due to weight of beam
itself and end point force due to concentrated weight respec-
tively. Taking the static deflection y(z) as a trial function,
the Rayleigh quotient will be given as

L
app?2 __ Vma: _ fO EIyHQdI
“ 7 LY AP ’
fo py?dz + Re

M
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(a) Feasible designs for 3Hz
First link

(b) Feasible designs for
1.5Hz Second link

7¢ 2: Link design

29 3: Two-link flexible manipulator

where w®?? and Re are angular frequency and remaining
lumped mass kinetic energy. If we rigorously manipulate
Eq. (7), we can obtain the simple algebraic equation such
that

N

app2 — 8
w D (8)
where N and D are, respectively
3L5w® +20F%L® FL'w
N = Bl—gpr ~ 157
D - M,(3L*w — 8FL?)? 4 Jo(LPw — 3FL?)? +
- 576F212 36E2]2
p(728L%w? — 3T1TFL8w + 4752F*L7)
181440E2]2 :

For each link of the flexible manipulator, if we apply the
above approximate method, we can find out the feasible set
of cross sectional shape having the desired link natural fre-
quency. The possible design candidates are shown in Fig. 2.
Considering inequality constraints such as static deflection
along gravity direction, ultimate strength, and other factors,
among the feasible set of design, we can choose appropriate
shape. The given link constants and finally chosen cross
sectional shapes are summerized in Table 1, 2, respectively.
To verify the validity of the approximate method, first mode
frequency is calculated for the designed link using analytic
formulation in Table 3.

3. CONTROLLER DESIGN FOR
TWO-LINK FLEXIBLE MANIPULATOR

1. PROBLEM FORMULATION

Fig. 3 shows the schematic diagram of the flexible manipu-
lator and we can derive dynamic equation by evaluating the
kinetic and potential energy independently with an assump-
tion that each link is Euler-Bernoulli beam of uniform den-
sity and cross section. Truncating higher frequency modes
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3 1: Given link constants

[ Constants ” Link 1 I Link 2 [ unit ]
E 71 71 [GPa]
p 2710 2710 | [kg/m?]
L 0.40 0.45 [m]
M, 15 0.1 [kg}
Jy 0.05 0.002 | [kgm?)
Desired freq. 3 1.5 [Hz]

X 2: Designed link parameters

‘ Parameter “ Link 1 ] Link 2 [ unit l

Thickness 0.004 | 0.0015 | [m]
Width 0.045 | 0.0176 | [m]
Weight || 0.196 | 0.0322 | [kg]

¥ 3: Comparison of the design method

Link First mode by Desired value of
analytic method First mode

Linkl 2.955 Hz 3.0 Hz

Link2 1.5 Hz 1.5 Hz

of vibration and leaving only lowest frequency mode, the
result of Lagrangian dynamics is described by finite order
generalized coordinate as follows.

Mg+ Cq+ Kq=Qr, (9)

where M, C, K € #*, Q € ®*** and 7 € R**'. The
matrices M, C, K and Q represent inertia matrix, Cori-
olis and centripetal matrix according to Christoffel’s sym-
bol, stiffness matrix and input channel matrix, respectively.
The detailed description of elements of each matrix is omit-
ted [1, 6]. When we write this manipulator dynamics into
nonlinear input affine form as

¢ = f(z)+G(x)u,

then,

H o e L e
q -M'K -M"'C q M'Q

Finally, we have a nonlinear dynamics which will be plugged
in the following controller design.

2. CONTROLLER DESIGN

In this section, we propose a variable structure based con-
troller that faithfully follows desired trajectorv. Widely
known feedback linearization method divides a nonlinear
system into controllable subsyvstem and zero dynamic sub-
svstem via coordinate transformation. Therefore, the sta-
bility of a nonlinear system is determined by zero dynamic
subsvstem. Unfortunately, it is known that zero dynam-
ics of flexible manipulator is unstable or marginally stable.
To modify the eigenvalue characteristics of zero dynamics,
some previous works like 77 used feedback linearization with
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virtual output or output correction. However, the whole
characteristics of zero dynamics of multi-link flexible sys-
tem were not definetely addressed. Let’s define a sliding
surface as

f

é+He=(4—q")+H(q-q"
(qa - qz) + H“(qa - qg) _
(a;—q))+Hs(q; —qf)

8

0, (11

I

where H,q, and g, represent R4** diagonal gain matrix,
R? actuator position and R? flexible mode, respectively.

ProOPOSITION 3..1 If we take control input as follows, the
whole error dynamics of given system asymptotically ap-
proaches zero.

T (T T T
v — TD s(s'b) ____D s(s b)’ (12)
(sTD)(sTD)T sTDDTs
where b and D are
s 0s 1_.
W. —+W. — As+ =W
6t+ 6:cf<$)+ .s+2 s
and
s
W —G
52 C (@)
respectively. We call this control as input distribution con-
trol.

Proof Counsider the following function with a positive def-
inite weighting matrix W.

lsTWs +eTHAe

2
[éTeT ]J[e} (13)

w WH

H'™W H"WH +2HA
diagonal positive definite matrices.
minors of J are

Ve, é,t)

N =

where J is |: , H and A are

The leading principal

o det(W) > 0 trivially true by assumption
o det(J) = det(W)det(HTWH
2HA — HTWW™'WH)
= det(W)det(2HA) > 0.
The above function Ve, é,t), therefore, can be a Lyapunov

function candidate. If we take directional derivative for (13)
along the dynamic flow (10),

vV = sTWs+ %STWS +2e"HAé

i

sTWs+ %W.s + As — As] +2e" HAeé

9=
ot

As] —sTAs+2e"HAe

sTb+ Du] - [¢"Aé +e " AHe +

e"H"Ae + e"H"AHel +2¢" HAé

= s'[b+Du)l-[e"Ae +e" H AHe]

= ST 9s )+ AV
= s [W + W am(_f~%—G u)+2Ws+



Introducing the control input (12) to above equation,

Ve ée,t)=—[e"Aée +e" H AHe] < 0 (14)
So, the derivative of Lyapunov function along dynamic flow
is strictly negative definite through all time. which means
that the above controller moves all the states to zero as time
goes to infinity. [ ]

The role of gain matrix A is PD control action that con-
tracts state error. The above controller distributes control
effort to hold all the state in sliding surface or at least in
small neighborhood of sliding surface despite the insufficient
number of control input. However, whenever all the state
are in the vicinity of sliding surface, the proposed controller
is in near singular point. To avoid the singularityv in real
implementation, we add a small configuration varyving posi-
tive number in denominator part of the proposed controller
as

D7s(s"b)
sTDD"s + cexp(—~sTDDTs)’

The slightly modified control shows a property that for large
state error, it approaches original input distribution control
and for small state error, it deviate from original control for
a small amount to avoid singularity.

4. SIMULATION RESULTS

To verify the validity of proposed controller, we conduct a
task to follow a desired circle of radius 0.25m during 9sec for
the two-link flexible manipulator. The physical parameters
are the same as designed in section 2. in Table 2. The
desired output trajectory is generated by fifth order smooth
polyvnomial as

t.s
o)
x(t) = xo + rcos(c(t)), y'(t) = yo + rsin(c(t))

ct) = 20.07r(%)3 — 30.07r(;;)4 + 12.07(

and q‘; and q(} are to be zero. If we take the weighting
matrix of proposed controller as system inertia matrix, we
don’t have to calculate of inverse of inertia matrix during
the construction of control torque. The gain matrices are
chosen as

A
H

diag {45, 3.2, 2.8, 2.2}
diag {7.0, 5.0. 4.5, 3.0}.

The simulation results are shown in Fig. 4. As can be
shown in this figure, the tracking performance of the pro-
posed control method is good.

5. CONCLUSION

In this paper. we proposed a design method for two-link
flexible manipulator. The result has confirmned using the
analytic formulation for flexible body, and the result showed
that the proposed method can predict very accurately the
first modes of 2 links. To faithfully follow a desired trajec-
tory, we proposed input distribution control for the two-link
flexible manipulator which has smaller number of input than
that of control variable. The performance of the proposed
controller was also verified by simulation. Tn the near fu-
ture, we will also verifv the proposed design method and
controller by experimental studyv.
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2% 4: Performance of input distribution control
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