• Title/Summary/Keyword: Two stage approach

Search Result 554, Processing Time 0.021 seconds

Theoretical Analysis of Open Water Characteristics of a Rudder (타 단독 특성의 이론적 해석)

  • I.Y. Gong;C.G. Kang;C.M. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.1
    • /
    • pp.29-42
    • /
    • 1992
  • A potential based panel method is used to predict the open water characteristics of spade-type rudders. The inflow velocity is assumed to be constant in lime and uniform in space. Source and dipole are distributed on the rudder surface. It is assumed that the wake surface is streaming from trailing edge and it is represented by dipole distribution. In this paper, wake geometry is assumed by imposing appropriate conditions at the trailing edge and far from the body. The effects of wake geometry are studied. The pressure Kutta condition is applied at the trailing edge, the effects of which are compared with those of two-dimensional Kutta condition. The results of calculations for a spade-type rudder are compared with published results. It is concluded that this approach shows fairly good agreement with experimental results and can be used in the initial design stage of a rudder.

  • PDF

Development of Poly(methyl methacrylate)-Clay Nanocomposites by Using Power Ultrasonic Wave

  • Ryu, Joung Gul;Lee, Jae Wook;Kim, Hyungsu
    • Macromolecular Research
    • /
    • v.10 no.4
    • /
    • pp.187-193
    • /
    • 2002
  • Several methods have been used to synthesize polymer-clay nanocomposites. In-situ polymerization with clay belongs to a classical way to develop nano-structured materials, while melt intercalation is being recognized as another useful approach due to its versatility and environmentally benign character. In this research, we prepared polymer-clay nanocomposites based on the poly (methyl methacrylate) and organically modified montmorillonite via two-stage sonication process. According to the unique mode of power ultrasonic wave, the sonication during processing led to enhanced breakup of the clay agglomerates and reduction in size of the dispersed phase. Optimum conditions to form stable exfoliated nanocomposites were studied for various compositions and conditions. It was found that a novel attempt carried out in this study yielded further improvement in the mechanical performance of the nanocomposites compared to those produced by the conventional melt mixing process, as revealed by DMA, XRD and TEM. And rheological properties of nanocomposites were measured by ARES. As a result, sonicated PMMA-clay nanocomposites exhibits enhanced properties such as storage modulus and thermal stability than that of neat PMMA.

Optimization-Based Pattern Generation for LAD (최적화에 기반을 둔 LAD의 패턴 생성 기법)

  • Jang, In-Yong;Ryoo, Hong-Seo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.1 s.39
    • /
    • pp.11-18
    • /
    • 2006
  • The logical analysis of data(LAD) is a Boolean-logic based data mining tool. A critical step in analyzing data by LAD is the pattern generation stage where useful knowledge and hidden structural information in data is discovered in the form of patterns. A conventional method for pattern generation in LAD is based on term enumeration that renders the generation of higher degree patterns practically impossible. In this paper, we present a novel optimization-based pattern generation methodology and propose two mathematical programming models, a mixed 0-1 integer and linear programming (MILP) formulation and a well-studied set covering problem (SCP) formulation for the generation of optimal and heuristic patterns, respectively. With benchmark datasets, we demonstrate the effectiveness of our models by automatically generating with ease patterns of high complexity that cannot be generated with the conventional approach.

  • PDF

Channel Allocation Using Mobile Station Network in Reproduction Stage (이동통신망에서 재생산 단계를 적용한 채널할당)

  • Heo, Seo-Jung;Son, Dong-Cheol;Kim, Chang-Suk
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.5
    • /
    • pp.577-582
    • /
    • 2012
  • If the mobile station requests the channel allocation in mobile networks, switching center is assigned a channel to mobile station that belong to each base station. Channel allocation schemes is a fixed channel allocation, dynamic channel allocation and a hybrid approach that combines the two forms. To assign a frequency well to use resources efficiently to provide quality service to our customers. In this paper, we proposed method to assign frequencies to minimize interference between channels and to minimizes the number of searching time. The proposed method by the genetic algorithm to improve accuracy and efficiency of the verification steps and reproduction stages were used. In addition, the proposed method by comparing with other methods showed that proposed method is better through the simulations.

Metal forming analysis using meshfree-enriched finite element method and mortar contact algorithm

  • Hu, Wei;Wu, C.T.
    • Interaction and multiscale mechanics
    • /
    • v.6 no.2
    • /
    • pp.237-255
    • /
    • 2013
  • In this paper, a meshfree-enriched finite element method (ME-FEM) is introduced for the large deformation analysis of nonlinear path-dependent problems involving contact. In linear ME-FEM, the element formulation is established by introducing a meshfree convex approximation into the linear triangular element in 2D and linear tetrahedron element in 3D along with an enriched meshfree node. In nonlinear formulation, the area-weighted smoothing scheme for deformation gradient is then developed in conjunction with the meshfree-enriched element interpolation functions to yield a discrete divergence-free property at the integration points, which is essential to enhance the stress calculation in the stage of plastic deformation. A modified variational formulation using the smoothed deformation gradient is developed for path-dependent material analysis. In the industrial metal forming problems, the mortar contact algorithm is implemented in the explicit formulation. Since the meshfree-enriched element shape functions are constructed using the meshfree convex approximation, they pose the desired Kronecker-delta property at the element edge thus requires no special treatments in the enforcement of essential boundary condition as well as the contact conditions. As a result, this approach can be easily incorporated into a conventional displacement-based finite element code. Two elasto-plastic problems are studied and the numerical results indicated that ME-FEM is capable of delivering a volumetric locking-free and pressure oscillation-free solutions for the large deformation problems in metal forming analysis.

Improvement of Filling Characteristics of Micro-Bumps in the Stencil Printing Process (스텐실 프린팅 공정에서 미세범프의 성형성 향상을 위한 연구)

  • Seo, W.S.;Min, B.W.;Park, K.;Lee, H.J.;Kim, J.B.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.26-32
    • /
    • 2012
  • In the present study, the stencil printing process using solder paste are numerically analyzed. The key design parameters in the stencil printing process are the printing conditions, stencil design, and solder paste properties. Among these parameters, the effects of printing conditions including the squeegee angle and squeegee pressure are investigated through finite element (FE) analysis. However, the FE analysis for the stencil printing process requires tremendous computational loads and time because this process carries micro-filling through thousands of micro-apertures in stencil. To overcome this difficulty in simulation, the present study proposes a two-step approach to sequentially perform the global domain analysis and the local domain analysis. That is, the pressure development under the squeegee are firstly calculated in the full analysis domain through the global analysis. The filling stage of the solder paste into a micro-aperture is then analyzed in the local analysis domain based on the results of the preceding global analysis.

An Integrated Approach to the Analysis and Design of a Three-Axis Cross-Coupling Control System

  • Jee, Sung-Chul;Lee, Hak-Chul
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.59-63
    • /
    • 2007
  • We propose a controller design analysis for a cross-coupling control system, which is essential for achieving high contouring accuracy in multi-axis CNC systems. The proposed analysis combines three axial controllers for each individual feed drive system together with a cross-coupling controller at the beginning of the design stage in an integrated manner. These two types of controllers used to be separately designed and analyzed since they have different control objectives. The proposed scheme is based on a mathematical formulation of a three-dimensional contour error model and includes a stability analysis for the overall control system and a performance analysis in terms of contouring and tracking accuracy at steady state. A computer simulation was used to demonstrate the validity of the proposed methodology. The performance variation was investigated under different operating conditions and controller gains, and a design range was elicited that met the given performance specifications. The results provide basic guidelines in systematic and comprehensive controller designs for multi-axis CNC systems. A cross-coupling control system was also implemented on a PC-based three-axis CNC testbed, and the experimental results confirmed the usefulness of the proposed control system in terms of contouring accuracy.

Design Guidelines of Piled Bridge Abutment subjected to Lateral Soil Movements (교대말뚝기초의 측방이동 판정기준 분석)

  • 정상섬;이진형;서동희;김유석;장범수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.381-388
    • /
    • 2002
  • A series of centrifuge model tests were performed to investigate the behavior of piled bridge abutment subjected to lateral soil movements induced by the construction of approach embankment. In these tests, both the depth of soft clay and the rate of embankment construction are chosen as key parameters to examine the effects on lateral soil movements. The depth of soft clay layer varies from 5.2 m to 11.6 m, and the rate of embankment construction has two types of staged construction(1m/30days, 1m/15days) and instant construction. It is shown that, the distribution of lateral flow induced by stage embankment construction has a trapezoidal distribution. And practical guidelines to check the possibility of some lateral movement of piled abutment were investigated. The validity of the proposed guidelines by centrifuge test was compared with the observed performance by lateral movement index, F(Japan Highway Public Corporation) and modified I index(Korea Highway Corporation). Based on the results obtained, the critical values of F and modified I, as a practical guidelines, are proposed to 0.03 and 2.0, respectively.

  • PDF

A Study on the Development of the 3-Dimensional Digital Design Tool (3$D^3$T) (3D 디지털 디자인 도구 개발에 관한 연구)

  • 김원섭
    • Archives of design research
    • /
    • v.17 no.1
    • /
    • pp.241-252
    • /
    • 2004
  • In this time, CAD is most important tool in Product Design Process. Traditional design methods were hardly used in Concurrent Engineering Process. But, CAD tools based on Reverse Engineering method have a lot of serious problem in using designer's works. Especially, in the early stage in design process, adopting CAD tool is impossible, cause of a property of design - intuition. A late studies about CAD system have approaching its quantitative factors in not only software but also hardware. In this paper, I researched about the problems of traditional 3d CAD tools and the new interface approach methods in recent CAD studies. Then, I proposed the guidelines and two alternatives about to developing 3D3T in ubiquitous engineering environment.

  • PDF

Weighted Local Naive Bayes Link Prediction

  • Wu, JieHua;Zhang, GuoJi;Ren, YaZhou;Zhang, XiaYan;Yang, Qiao
    • Journal of Information Processing Systems
    • /
    • v.13 no.4
    • /
    • pp.914-927
    • /
    • 2017
  • Weighted network link prediction is a challenge issue in complex network analysis. Unsupervised methods based on local structure are widely used to handle the predictive task. However, the results are still far from satisfied as major literatures neglect two important points: common neighbors produce different influence on potential links; weighted values associated with links in local structure are also different. In this paper, we adapt an effective link prediction model-local naive Bayes model into a weighted scenario to address this issue. Correspondingly, we propose a weighted local naive Bayes (WLNB) probabilistic link prediction framework. The main contribution here is that a weighted cluster coefficient has been incorporated, allowing our model to inference the weighted contribution in the predicting stage. In addition, WLNB can extensively be applied to several classic similarity metrics. We evaluate WLNB on different kinds of real-world weighted datasets. Experimental results show that our proposed approach performs better (by AUC and Prec) than several alternative methods for link prediction in weighted complex networks.