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We propose a controller design analysis for a cross-coupling control system, which is essential for achieving high
contouring accuracy in multi-axis CNC systems. The proposed analysis combines three axial controllers for each
individual feed drive system together with a cross-coupling controller at the beginning of the design stage in an
integrated manner. These two types of controllers used to be separately designed and analyzed since they have
different control objectives. The proposed scheme is based on a mathematical formulation of a three-dimensional
contour ervor model and includes a stability analysis for the overall control system and a performance analysis in
terms of contouring and tracking accuracy at steady state. A computer simulation was used to demonstrate the
validity of the proposed methodology. The performance variation was investigated under different operating
conditions and controller gains, and a design range was elicited that met the given performance specifications. The
results provide basic guidelines in systematic and comprehensive controller designs for multi-axis CNC systems. A
cross-coupling control system was also implemented on a PC-based three-axis CNC testbed, and the experimental

results confirmed the usefulness of the proposed control system in terms of contouring accuracy.

1. Introduction

Servo controllers for CNC machine tools can be classified as axial
or cross-coupling. Axial controllers are intended to maximize the
position tracking performance of individually driven axes for a given
feedrate, and cross-coupling controllers'™ are used to improve the
contouring performance by coordinating all the driven axes
simultaneously based on contour error observations. These two types
of controllers have different control objectives and are typically
studied separately. Cross-coupling controllers have simply been
added to axial controller platforms without considering the
interactions between the two types of controllers, and research has
focused mainly on verifying their performance. To improve the
contouring accuracy of multi-axis CNC systems, cross-coupling
controllers are essential and an integrated control system design is
needed at the beginning of the design stage when both the contouring
and tracking performance are considered. This paper proposes an
integrated analysis methodology for a three-axis cross-coupling
control system and provides basic guidelines for a design to improve
the performance of multi-axis CNCs. A cross-coupling control
system was also implemented on a PC-based three-axis CNC testbed,
and the experimental results confirmed the utility of the proposed
control system in terms of contouring accuracy.

2. Design Analysis of a Three-Axis Cross-Coupling Control
System
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2.1 Analysis of the contour error model

The relationship between the contour and tracking errors of a
three-axis cross-coupling control system was examined using the
approximations obtained from a nonlinear contour error model as
functions of the tracking error. This provides a framework for further
analysis and design of the control system. The three-dimensional

Z4 Desired
Tool Path
R(k)
(k
« )O\ N, UR(Kk-d+2)
. P :’E:—:)(W\E » Actual
—d DN ¢ Tool Path
R | DR
Hioy
K(k) P P+
Lot Pl
] .
Y

k: current time step

d: number of time steps for position lag
X
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real-time contour error model' considered in this study utilized three
neighboring reference points, R(k —d — 1), R(k — d), and R(k—d + 1),
in addition to the current actual position P(k), as illustrated in Fig. 1,
where R(k —d) is the closest point to P(k).

In the contour error approximation, for the sake of convenience,
the contour error vector € was projected onto two of the XY, YZ, and
ZX planes, and each axial component of the contour error was
derived for the analysis. The contour error vector projected on the
XY plane, for example, can reflect the three-dimensional components
& and g, Using the approximation K(k) ~ R(k — d), where K(k) is the
intersection of CH with the circle created by the three reference points,
the contour error vector projected on the XY plane can be defined by

g=g+¢ 0))
as shown in Fig. 2. Therefore, by representing the vectors £ and &”
with the geometric angles shown in Fig. 2 and the tracking error, we
can obtain the relationship between the contour and tracking errors.

Using a Taylor series expansion of point Q(k) with respect to
point R(k — d) and the geometry shown in Fig. 2, we can derive the
axial components of &, after some mathematical manipulations, as

&, =(Ccosv)E, +(Cisinv))E, =4 E +4 E, @
&, =(C,cosv)E, +(C,sinv))E, =B E +B E, 3)

where
C = L(C3 cosv, +C,sinv,))(—sing,) + 1 1'|cosy,
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Fig. 2 Contour error vector projected onto the XY plane

Hence, as shown by Eqgs. (2) and (3), it is possible to define the
contour error components along the X- and Y-axes using a

combination of geometric angles and the tracking error components.
Similarly, the contour error components on the YZ plane are as
follows:

&, =(Dycosv,)E, +(Dsinv,)E, =B, E, + B E, 4)
g, =(D,cosv,)E, +(D,sinv,)E, =C, E +C, E, )

where v, = tan” (K, / E,), and D, and D, are defined using the angles
on the YZ plane in the same manner as C; and C,. Likewise, the
following relations are obtained for the ZX plane:

gz = C32Ez + C3xEx (6)
gx = A3zEz + A3xEx (7)

Consequently, the three-dimensional contour etror can be expressed
as a function of the tracking error, which facilitates various analyses
in the succeeding design process.

2.2 Stability analysis of the cross-coupling control system

A stability analysis was performed for the three-axis cross-
coupling control system shown in Fig. 3, in which a proportional
controller and a PID controller were employed for individual axis
control and cross-coupling control, respectively. Let the diagonal
matrix be Kp, whose diagonal elements are the proportional gains Kp;
(i = x, y, z) of each axial controller. Also let the cross-coupling
controller matrix be G¢ (= G 1), where
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Fig. 3 Three-axis cross-coupling control system

If we let the transfer function matrix for the feed drive system be G(z),
then its diagonal elements are defined as follows with open-loop
gains K; and time constants 7; for each axis and sampling period 7:

H,z+H,,

A o v

(i=x,2) ©

where
H,=KT-7,+77)
Hy, =K /(z,—7r,—Tr)
2 exp(-T/7,)

In the above case, the position output vector P(z) and the control
signal vector U(z) are given by

P(z)=G(2)U(2)
U@ =K,E(2) +G8(2)

(10)
(11)

Since each axial component & of the contour error was defined as a
combination of tracking error components on the projected plane,
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Eq. (11) can be expressed as
U(2) =[Kp + G (2IM(2)[E(2) = T(2)E(2) (12)

In Eq. (12), M(z) corresponds to a transformation matrix between
€(z) and E(z) . From Egs. (2) through (7), M(z) can be defined as

1 Alx + A3x Aly A3Z
MG)==| B, B,+B, B, (13)
C}x C2y CZZ + C3z

In Eq. (13), subscripts 1, 2, and 3 indicate that the coefficients are
defined on the XY, YZ, and ZX planes, respectively. Combining
Egs. (10) and (12), we obtain a relationship between the position error
and the position output vector,

P(z) = G(2)T(2)E(z) = Q(2)E(2) (14)

For the sake of convenience, Eq. (14) is decomposed into XY and YZ

(or ZX) planes. By applying Eq. (14) to the characteristic equation
for each plane,

defl+€, ()| =0 (15)

a stability analysis for the overall system can be performed. In
Eq. (15), the subscript ij represents the projected plane.

In our stability analysis, we first assumed a matched system, in
which the X-, Y-, and Z-axes have the same system parameters,
Hy;=H,, Hy=H,, and r; = r in Eq. (9) and the position feedback
controller gains Kp; = Kp, which makes Eq. (15) appear as

Q,(2)Q,(z)=0 (16)
where
Q(2)=E-Yz-r)+K,(Hz+H,)

Q,(2) = (z -1z ~r)+[K, + Go(2)M(H,z + Hy)
M= Ay, + By, (XY plane) or By, + Co, (YZ plane)

By applying Jury’s stability criterion to each system defined on the
projected plane and performing the stability analysis repeatedly for
each different set of (i.e., mismatched) feed drive system parameters,
a common stability range of the controller gains can be determined
for the overall three-axis system.

As a result, from the conditions on €,(z), a stable range for the
position feedback controller gain is acquired from

K, <min[(1-r)/H,] Q17
i=x,y,z

Then, by reflecting the above inequality in the conditions on Q,(z),
stable ranges for the cross-coupling controller gains Cp, C;, and Cp
can be obtained. In the meantime, the coefficient M is intricately
defined using the angles given in Section 2.1. It is necessary to first
determine its possible range using a computer program and inject this
into the stability conditions such that the stable ranges for the
controller gains are minimized.

2.3 Performance analysis of the cross-coupling control system
For the system shown in Fig. 3, a performance analysis was
conducted for three-dimensional circular motion from two different
points of view: contouring and tracking. In this analysis, we assumed
a matched three-axis system.
The contour and tracking error vectors were defined for a
reference position input vector R(z) as

£2)=zR(2)-P(2) (18)
E(z)=R(z)-P(2) (19)

In Eq. (18), d indicates the number of time steps for the position lag.
From Egs. (10), (11), (18), and (19), the following relationships can
be deduced:

P(z)=H(z)R(z) (20)
H(2) =[1+G(2) K, +Gc(2)}T'GE@)K, +2 G(2)] @n

In the case of three-dimensional circular motion, the reference input
vector can be expressed by

R(z) = RuC(z) + R,vS(z) 22)

where R, is the radius of a circle, w and v are the orthonormal basis
for the circle, and C(z) and S(z) are the z-transform of cos kT and
sin wkT, respectively («: reference angular velocity). Accordingly,
based on Egs. (20) and (22), the position output vector can be
rearranged as

P(2) = U, (2)C(2) + Vu (2)S(2) 23)

where Uy(z) = R,H(z)u and Vy(z) = R,H(z)v. To obtain a discrete-
time response of Eq. (23), we define

L) =Up(e) V() =a+ /b 4
Then the real vectors a and b are as follows:

a=Re {L(e"“’?:)} 25)

b = Im{L(“")} (26)

and the steady-state response of the position output can be obtained
from

P(kT) = Re{L(e’")e’*"} =acos wkT —bsinwkT 27

The magnitude of the contour error for three-dimensional circular
motion can be defined as

e=|g|=(pP)" -,
/2
1 1
Sl ol S -l Jeoszakr | 9
—a"bsin20kT
In Egs. (25) and (26), if the three axes are matched, |a“:nbn and
a’b = 0, the magnitude of the contour error is given by
&=la- R, =[Re (e )|~ R, (29)

From Egs. (19) and (20), the tracking error vector for the
reference position input vector can be represented as

E(z) =[1-H(z)]R(z) = J(2)R(2) (30)

By substituting Eq. (22) into Eq. (30) and following the same
procedure as that for the position output response, we can obtain the
magnitude of the tracking error at steady state:

/2

E=|E|=(E"E) = R [Re e - j3 (W) G

The values of the above equations are all determined by the
unknown constant d. This constant can be numerically calculated
such that it simultaneously satisfies Egs. (18), (27), and

(kT R((k—d)T)=0 (32)

which indicates that the contour error vector is normal to the velocity
vector at point R(k — d). Consequently, it is possible to predict the
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contouring and tracking performance accurately at steady state for the
three-axis control system according to the operating conditions (i.e,
the feedrate and radius of curvature of a contour) and controller gains,
which can be applied to the controller design considering both
performance together in an integrated manner.

3. Simulation and Experimental Results

To verify the validity of the proposed stability analysis for the
system described in Table 1, the results were compared with those
obtained from a separate computer simulation shown in Fig. 4, where
0 < Kp < 16.64. The figure indicates that the proposed analysis is
appropriate for this system.

Table 1 System parameters

Parameters X-axis | Y-axis | Z-axis
Open-loop gain (s™) 121 118 83
Time constant (s) 0.025 0.03 0.01
Basic length unit (BLU) 0.5 pm
Sampling time (s) 0.001
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Fig. 5 Design range of the controller gains for different input
frequencies

From the performance analysis, an example range of controller
gains that satisfies both a contouring accuracy of 25 um and a
tracking accuracy of 250 pm is illustrated in Fig. 5 for three reference
angular velocities. In this example, we assumed that C; = 2.62Cp and
Cp = 0.02Cp. We considered a suitable proportional gain Cp of the
cross-coupling controller to be one that maximizes the contouring
performance for the feedback controller gain Kp chosen such that the
tracking performance is restricted to the required minimum because
the tracking performance is not critical to the machining accuracy. In
this context, a suitable set of gains for the given operating conditions
can be found in the lower right portion of the design range (i.e., in the
vicinity of point C) in Fig. 5. The simulation results shown in Fig. 6
validate this principle used to determine the controller gains.
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Fig. 6 Simulation results of the contour errors at selected points in the
design range

To evaluate the actual performance of the proposed three-axis
cross-coupling control system, we implemented it on a PC-based
three-axis CNC testbed that had a position resolution of 0.153 pm.
The actual contour error of the control system is shown in Fig. 7 for
three-dimensional circular motion with a radius of 50 mm and a high
feedrate of 10 m/min. This result confirms the utility of the proposed
control system in terms of contouring accuracy.
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Fig. 7 Experimental contouring accuracy obtained using the proposed
cross-coupling control system

4. Conclusions

We proposed a stability analysis method for a three-axis cross-
coupling control system based on a mathematical analysis of a three-
dimensional contour error model, and also a methodology for a
performance analysis that can accurately determine the contouring
and tracking performance at steady state for matched systems. We
verified the proposed approaches through computer simulations and
validated the utility of the proposed control system in terms of
contouring accuracy by performing an actual experiment.
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