• Title/Summary/Keyword: Turbulent Reynolds Number

Search Result 674, Processing Time 0.028 seconds

A Numerical Study of the Effects of Mass Flow Rate Distribution on the Flow Characteristics in a Two Dimensional Multi-Jet with Crossflow of the Spent Fluid (직교류를 가지는 이차원 다중젯트에서 유량분포가 유동특성에 미치는 영향)

  • 강동진;오원태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.1940-1949
    • /
    • 1995
  • A numerical study for a two dimensional multi-jet with crossflow of the spent fluid has been carried out. Three different distributions of mass-flow rate at 5 jet exits were assumed to see their effects upon the flow characteristics, especially in the jet-flow region. For each distribution, various Reynolds numbers ranging from laminar to turbulent flows were considered. Results show that a fully developed laminar flow exists above a certain Reynolds number whose exact value depends upon the mass flow rate distribution. AS the Reynolds number increases, the flow becomes transitional from downstream and finally a fully developed turbulent flow forms in the jet-flow region. The critical Reynolds number where the fully developed turbulent flow forms is quite dependent upon the distribution of mass-flow rate. One interesting result is that the distribution of the skin friction coefficient along the inpingement plate in the jet-flow region shows a consistent dependency on the Reynolds number, i.e. inversely proportional to the square root of the Reynolds number, regardless of flow regime.

Investigation of Turbulent Flow in Rotating Straight Square Duct (회전하는 정사각 직관내 난류유동)

  • Chun, K.H.;Choi, Y.D.;Kim, D.C.;Choi, S.Y.;Lim, H.Y.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.766-771
    • /
    • 2001
  • An experimental study was undertaken to investigate the effect of coriolis force for the turbulent flow at low Reynolds numbers in a rotating straight square duct. The study was carried out using a hot-wire anemometer. The flow Reynolds number based on the hydraulic diameter ranged from 4,000 to 18,000 and Rotation number ranged from 0 to 0.196. At Re=9000, developing turbulent flow was calculated for mean velocity and Reynolds stress. Pressure coefficient and energy dissipation spectrum were also calculated.

  • PDF

A Low-Reynolds Number Second Moment Closure for Turbulent Heat Fluxes (저레이놀즈수 2차 모멘트 난류 열유속모형 개발에 관한 연구)

  • 신종근;최영돈;이건휘
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.3196-3207
    • /
    • 1993
  • A second moment turbulent closure for the turbulent heat flux near a wall is developed by modification of model constants in pressure interaction term as the variables of the turbulent Reynolds number using the universal properties of turbulent heat flux near the wall. The present model shows that model constant for the wall reflection term in pressure interaction is most important in modelling of the near wall heat flux. Fully developed pipe flows with constant wall heat flux are tested to validate the proposed model. In most of calculation region, the predicted turbulent properties agree better with the experimetal data than the results from standard algebraic heat flux model which use the uniform model constants.

The comparison between Numerical Computation and Experiment on Fluid Elow in Rectangular Duct (사각덕트내의 유체유동에 관한 수치계산과 실험의 비교)

  • Yoon Young-Hwan;Bae Taeg-Hee;Park Won-Gu
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.71-74
    • /
    • 2002
  • Fluid flow in a rectangular duct system are measured by W laser doppler velocity meter, and also computed by commercial software of STAR-CD for comparison between then First, for a rectangular duct with 90 degree metered elbow, the fluid flow with Reynolds numbs's of 1,508 is predicted by assumption of both laminar and turbulent models. But, even though the Reynolds number is less than 2,300-3,000, the computation by turbulent model is close to the experimental data. Moeover, the computation by turbulent model for Reynolds number of 11,751 also predicts the experimental data satisfactorily. Second, for a rectangular duct with two branch ducts, the ratios between flow rates in the two branches are invariant to Reynolds number according to both of numerical and experimental results.

  • PDF

Study on Fluid Flow in Rectangular Duct past $90^{\circ}$ Mitered Elbow (사각덕트내 직각엘보우를 지난 유체유동에 관한 연구)

  • 윤영환;배택희;박원구
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.6
    • /
    • pp.670-678
    • /
    • 2002
  • Fluid flow in a rectangular duct with $90^{\circ}$ mitered elbow is measured by 5W laser doppler velocity meter. The fluid flow is also computed by commercial software of STAR-CD for comparison between measured and computed velocity profiles in the duct. Reynolds numbers for the comparison are 1,608 and 11,751 based on mean velocity and hydraulic diameter of the duct. First, the fluid flow of Reynolds number equal to 1,608 is predicted by assumptions of both laminar and turbulent models. But, even though the Reynolds number is less than 2,300~3,000, the computation by turbulent model is closed to the experimental data than that by laminar model. Second, the computation for Reynolds number of 11,751 by turbulent model also predicted the experimental data satisfactorily.

A Low-Reynolds-Number 4-Equation Model for Turbulent Separated and Reattaching Flows (난류박리 및 재부착 유동의 해석을 위한 저레이놀즈수 4-방정식 난류모형의 개발)

  • 이광훈;성형진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.2039-2050
    • /
    • 1995
  • The nonlinear low-Reynolds-number k..epsilon. model of park and Sung is extended to predict the turbulent heat transports in separated and reattaching flows. The equations of the temperature variance( $k_{\theta}$ and its dissipation rate(.epsilon.$_{\theta}$ are solved, in concert with the equations of the turbulent kinetic energy(k) and its dissiation rate(.epsilon). In the present model, the near-wall effect and the non-equilibrium effect are fully taken into consideration. The validation of the model is then applied to the turbulent flow behind a backward-facing step and the flow over a blunt body. The predicted results of the present model are compared and evaluated with the relevant experiments.

Flow in turbulent boundary layers with coriolis force (코리올리힘 이 作용하는 亂流境界層內 의 流動 에 관한 硏究)

  • 이규한
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.2
    • /
    • pp.181-189
    • /
    • 1985
  • The effect of the Coriolis force on the 2-D turbulent boundary layer which is developed in the side wall of the rotating rectangular flow channel was investigated. In this study, we measured mean velocities, turbulent velocity components(axial as well as lateral ones) and Reynolds stresses of the turbulent boundary layer. For high Reynolds number flows, the turbulent boundary layer without pressure gradient is hardly affected by the rotation. For low Reynolds number flows, however, the shearing stress at suction side decreases. Consequently, the velocity near the wall become slower so that the thickness of the viscous sublayer expands. On the other hand, the velocity near the wall at pressure side turns out increased.

Development of Low Reynolds Number k-ε Model for Prediction of a Turbulent Flow with a Weak Adverse Pressure Gradient (약한 역압력구배의 난류유동장 해석을 위한 저레이놀즈수 k-ε 모형 개발)

  • Song, Kyoung;Cho, Kang Rae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.5
    • /
    • pp.610-620
    • /
    • 1999
  • Recently, numerous modifications of low Reynolds number $k-{\epsilon}$ model have boon carried out with the aid of DNS data. However, the previous models made in this way are too intricate to be used practically. To overcome this shortcoming, a new low Reynolds number $k-{\epsilon}$ model has boon developed by considering the distribution of turbulent properties near the wall. This study proposes the revised a turbulence model for prediction of turbulent flow with adverse pressure gradient and separation. Nondimensional distance $y^+$ in damping functions is changed to $y^*$ and some terms modeled for one dimensional flow in $\epsilon$ equations are expanded into two or three dimensional form. Predicted results by the revised model show an acceptable agreement with DNS data and experimental results. However, for a turbulent flow with severe adverse pressure gradient, an additive term reflecting an adverse pressure gradient effect will have to be considered.

Visualization of Turbulent Flow Fields Around a Circular Cylinder at Reynolds Number 1.4×105 Using PIV

  • Jun-Hee Lee;Bu-Geun Paik;Seok-Kyu Cho;Jae-Hwan Jung
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.137-144
    • /
    • 2023
  • This study investigates the experimental parameters of particle image velocimetry (PIV) to enhance the measurement technique for turbulent flow fields around a circular cylinder at a Reynolds number (Re) of 1.4×105. At the Korea Research Institute of Ships & Ocean Engineering (KRISO), we utilized the cavitation tunnel and PIV system to capture the instantaneous flow fields and statistically obtained the mean flow fields. An aspect ratio and blockage ratio of 16.7% and 6.0%, respectively, were considered to minimize the tunnel wall effect on the cylinder wakes. The optimal values of the pulse time and the number of flow fields were determined by comparing the contours of mean streamlines, velocities, Reynolds shear stresses, and turbulent kinetic energy under their different values to ensure accurate and converged results. Based on the findings, we recommend a pulse time of 45 ㎲ corresponding to a particle moving time of 3-4 pixels, and at least 3,000 instantaneous flow fields to accurately obtain the mean flow fields. The results of the present study agree well with those of previous studies that examined the end of the subcritical flow regime.

Direct Numerical Simulation of Turbulent new Around a Rotating Circular Cylinder at Low Reynolds Number (회전하는 원형단면 실린더 주위의 저 레이놀즈수 난류유동에 대한 직접수치모사)

  • Hwang Jong-Yeon;Yang Kyung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.10 s.241
    • /
    • pp.1083-1091
    • /
    • 2005
  • Turbulent flow around a rotating circular cylinder is investigated by Direct Numerical Simulation. The calculation is performed at three cases of low Reynolds number, Re=161, 348 and 623, based on the cylinder radius and friction velocity. Statistically strong similarities with fully developed channel flow are observed. Instantaneous flow visualization reveals that the turbulence length scale typically decreases as Reynolds number increases. Some insight into the spacial characteristics in conjunction with wave number is provided by wavelet analysis. The budget of dissipation rate as well as turbulent kinetic energy is computed and particular attention is given to the comparison with plane channel flow.