Browse > Article
http://dx.doi.org/10.3795/KSME-B.2005.29.10.1083

Direct Numerical Simulation of Turbulent new Around a Rotating Circular Cylinder at Low Reynolds Number  

Hwang Jong-Yeon (인하대학교 기계기술공동연구소)
Yang Kyung-Soo (인하대학교 기계공학부)
Publication Information
Transactions of the Korean Society of Mechanical Engineers B / v.29, no.10, 2005 , pp. 1083-1091 More about this Journal
Abstract
Turbulent flow around a rotating circular cylinder is investigated by Direct Numerical Simulation. The calculation is performed at three cases of low Reynolds number, Re=161, 348 and 623, based on the cylinder radius and friction velocity. Statistically strong similarities with fully developed channel flow are observed. Instantaneous flow visualization reveals that the turbulence length scale typically decreases as Reynolds number increases. Some insight into the spacial characteristics in conjunction with wave number is provided by wavelet analysis. The budget of dissipation rate as well as turbulent kinetic energy is computed and particular attention is given to the comparison with plane channel flow.
Keywords
Direct Numerical Simulation; Wavelet Transform; Turbulence Kinetic Energy; Dissipation Rate Budget;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Jang, C. M., Furukawa, M. and Inoue, M., 2003, 'Frequency Characteristics of Fluctuating Pressure on Rotor Blade in a Propeller Fan,' JSME Int. J., Vol. 46, No.1, pp. 163-172   DOI   ScienceOn
2 McClusky, H. L., Holloway, M. V., Beasley, D. E. and Ochterbeck, J. M., 2002, 'Continuous Wavelet Transforms of Instantaneous Wall Pressure in Slug and Churn Upward Gas-Liquid Flow,' J. Fluids Engineering, Vol. 124, pp. 625-633   DOI   ScienceOn
3 Morlet, J., Arens, G., Fourgeau, I. and Giard, D., 1982, 'Wave Propagation and Sampling Theory,' Geophysics, Vol. 47, pp. 203-236   DOI   ScienceOn
4 Yang, K. S., Hwang, J. Y., Bremhorst, K. and Nesic, S., 2003, 'Numerical Investigation of Turbulent Flow Around a Rotating Stepped Cylinder for Corrosion Study,' The Canadian J. Chemical Eng., Vol. 81, No. 1, pp. 26-36
5 Yang, K. S, Hwang, J. Y. Bremhorst, K. and Nesic, S., 2002, 'Turbulent Flow Around a Rotating Stepped Cylinder,' Physics of Fluids, Vol. 14, No.4, pp. 1544-1547   DOI   ScienceOn
6 Rosenfeld, M., Kwak, D. and Vinkur, M., 1994, 'A Fractional Step Solution Method for the Unsteady Incompressible Navier-Stokes Equations in Generalized Coordinate Systems,' J. Computational Physics, Vol. 94, pp. 102-137   DOI   ScienceOn
7 Farge, M., 1992, 'Wavelet Transforms and Their Applications to Turbulence,' Annu. Rev. Fluid Mech., Vol. 24, pp. 395-457   DOI   ScienceOn
8 Chung, S. Y., Rhee, G. H. and Sung, H. J., 2002, 'Direct Numerical Simulation of Turbulent Concentric Annular Pipe Flow, Part 1 : Flow Field,' J. Heat & Fluid Flow, Vol. 23, pp. 426-440   DOI   ScienceOn
9 Kim, J., Moin, P. and Moser, R., 1987, 'Turbulence Statistics in Fully Developed Channel Flow at Low Reynolds Number,' J. Fluid Mech., Vol. 177, pp. 133-166   DOI   ScienceOn
10 Le, H., Moin, P. and Kim, J., 'Direct Numerical Simulation of Turbulent Flow over a Backward-Facing Step,' J. Fluid Mech., Vol. 330, pp. 349-374   DOI   ScienceOn
11 Mansour, N. N., Kim, J. and Moin, P., 1988, 'Reynolds-Stress and Dissipation-Rate Budgets in a Turbulent Channel Flow,' J. Fluid Mech., Vol. 194, pp. 15-44   DOI   ScienceOn
12 Spalart, P. R., 1988, 'Direct Simulation of a Turbulent Boundary Layer up to $R{\Theta}=1410,' J. Fluid Mech., Vol. 187, pp. 61-98   DOI   ScienceOn
13 Moin, P. and Kim, J., 1982, 'Numerical Investigation of Turbulent Channel Flow,' J. Fluid Mech., Vol. 118, pp. 341-377   DOI   ScienceOn
14 Karman, T. and Howarth, L., 1938, 'On the Statistical Theory of Isotropic Turbulence,' Proc. roy. Soc. London (A) 164, pp. 192-215   DOI
15 Hinze, J., 1975, Turbulence, McGraw-Hill, Inc., 2nd edit., pp. 321-350
16 Tennekes, H. and Lumley, J. L., 1972, 'A First Course in Turbulence,' MIT Press, Cambridge, MA