DOI QR코드

DOI QR Code

Direct Numerical Simulation of Turbulent new Around a Rotating Circular Cylinder at Low Reynolds Number

회전하는 원형단면 실린더 주위의 저 레이놀즈수 난류유동에 대한 직접수치모사

  • 황종연 (인하대학교 기계기술공동연구소) ;
  • 양경수 (인하대학교 기계공학부)
  • Published : 2005.10.01

Abstract

Turbulent flow around a rotating circular cylinder is investigated by Direct Numerical Simulation. The calculation is performed at three cases of low Reynolds number, Re=161, 348 and 623, based on the cylinder radius and friction velocity. Statistically strong similarities with fully developed channel flow are observed. Instantaneous flow visualization reveals that the turbulence length scale typically decreases as Reynolds number increases. Some insight into the spacial characteristics in conjunction with wave number is provided by wavelet analysis. The budget of dissipation rate as well as turbulent kinetic energy is computed and particular attention is given to the comparison with plane channel flow.

Keywords

References

  1. Karman, T. and Howarth, L., 1938, 'On the Statistical Theory of Isotropic Turbulence,' Proc. roy. Soc. London (A) 164, pp. 192-215 https://doi.org/10.1098/rspa.1938.0013
  2. Hinze, J., 1975, Turbulence, McGraw-Hill, Inc., 2nd edit., pp. 321-350
  3. Tennekes, H. and Lumley, J. L., 1972, 'A First Course in Turbulence,' MIT Press, Cambridge, MA
  4. Moin, P. and Kim, J., 1982, 'Numerical Investigation of Turbulent Channel Flow,' J. Fluid Mech., Vol. 118, pp. 341-377 https://doi.org/10.1017/S0022112082001116
  5. Kim, J., Moin, P. and Moser, R., 1987, 'Turbulence Statistics in Fully Developed Channel Flow at Low Reynolds Number,' J. Fluid Mech., Vol. 177, pp. 133-166 https://doi.org/10.1017/S0022112087000892
  6. Mansour, N. N., Kim, J. and Moin, P., 1988, 'Reynolds-Stress and Dissipation-Rate Budgets in a Turbulent Channel Flow,' J. Fluid Mech., Vol. 194, pp. 15-44 https://doi.org/10.1017/S0022112088002885
  7. Spalart, P. R., 1988, 'Direct Simulation of a Turbulent Boundary Layer up to $R{\Theta}=1410,' J. Fluid Mech., Vol. 187, pp. 61-98 https://doi.org/10.1017/S0022112088000345
  8. Chung, S. Y., Rhee, G. H. and Sung, H. J., 2002, 'Direct Numerical Simulation of Turbulent Concentric Annular Pipe Flow, Part 1 : Flow Field,' J. Heat & Fluid Flow, Vol. 23, pp. 426-440 https://doi.org/10.1016/S0142-727X(02)00140-6
  9. Le, H., Moin, P. and Kim, J., 'Direct Numerical Simulation of Turbulent Flow over a Backward-Facing Step,' J. Fluid Mech., Vol. 330, pp. 349-374 https://doi.org/10.1017/S0022112096003941
  10. Yang, K. S., Hwang, J. Y., Bremhorst, K. and Nesic, S., 2003, 'Numerical Investigation of Turbulent Flow Around a Rotating Stepped Cylinder for Corrosion Study,' The Canadian J. Chemical Eng., Vol. 81, No. 1, pp. 26-36
  11. Yang, K. S, Hwang, J. Y. Bremhorst, K. and Nesic, S., 2002, 'Turbulent Flow Around a Rotating Stepped Cylinder,' Physics of Fluids, Vol. 14, No.4, pp. 1544-1547 https://doi.org/10.1063/1.1455625
  12. Rosenfeld, M., Kwak, D. and Vinkur, M., 1994, 'A Fractional Step Solution Method for the Unsteady Incompressible Navier-Stokes Equations in Generalized Coordinate Systems,' J. Computational Physics, Vol. 94, pp. 102-137 https://doi.org/10.1016/0021-9991(91)90139-C
  13. Farge, M., 1992, 'Wavelet Transforms and Their Applications to Turbulence,' Annu. Rev. Fluid Mech., Vol. 24, pp. 395-457 https://doi.org/10.1146/annurev.fl.24.010192.002143
  14. Jang, C. M., Furukawa, M. and Inoue, M., 2003, 'Frequency Characteristics of Fluctuating Pressure on Rotor Blade in a Propeller Fan,' JSME Int. J., Vol. 46, No.1, pp. 163-172 https://doi.org/10.1299/jsmeb.46.163
  15. McClusky, H. L., Holloway, M. V., Beasley, D. E. and Ochterbeck, J. M., 2002, 'Continuous Wavelet Transforms of Instantaneous Wall Pressure in Slug and Churn Upward Gas-Liquid Flow,' J. Fluids Engineering, Vol. 124, pp. 625-633 https://doi.org/10.1115/1.1490376
  16. Morlet, J., Arens, G., Fourgeau, I. and Giard, D., 1982, 'Wave Propagation and Sampling Theory,' Geophysics, Vol. 47, pp. 203-236 https://doi.org/10.1190/1.1441329