• Title/Summary/Keyword: Turbo Codes

Search Result 207, Processing Time 0.019 seconds

Study on DPSAM Turbo TCM in Time-Selective Fading Channels (시간 선택적 페이딩 채널 환경에서 DPSAM Turbo TCM에 관한 연구)

  • Kim, Jeong-Su
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.11
    • /
    • pp.107-113
    • /
    • 2013
  • Mobile mobility and data reliability should be guaranteed as well as amounts of data services are essential in the era of smart media. In order to improve the reliability of high-speed data, strong channel coding and modulation techniques are required. In this paper, the structure of Turbo TCM decoder, applying high-order modulation techniques and the DPSAM method which improves performances in time-selective fading channels in the case of burst errors are suggested through the optimal decoding method and iteration decoding so as to improve bandwidth efficiency in Turbo Codes with excellent encoding gain. The proposed method in comparison with the existing method is that 3dB is superior in case that BER is $10^{-2}$ and the number of iterations is 3. In addition, the function is improved at approximately 6dB in case that BER is $10^{-3}$ and the number of iterations is 7. The proposed method requires additional bandwidth; however, the bandwidth loss can be overcome through Turbo TCM technology on the additional bit rate from the bandwidth loss.

Trellis-Based Decoding of High-Dimensional Block Turbo Codes

  • Kim, Soo-Young;Yang, Woo-Seok;Lee, Ho-Jin
    • ETRI Journal
    • /
    • v.25 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • This paper introduces an efficient iterative decoding method for high-dimensional block turbo codes. To improve the decoding performance, we modified the soft decision Viterbi decoding algorithm, which is a trellis-based method. The iteration number can be significantly reduced in the soft output decoding process by applying multiple usage of extrinsic reliability information from all available axes and appropriately normalizing them. Our simulation results reveal that the proposed decoding process needs only about 30% of the iterations required to obtain the same performance with the conventional method at a bit error rate range of $10^{-5}\;to\;10^{-6}$.

  • PDF

An FPGA Implementation of High-Speed Flexible 27-Mbps 8-StateTurbo Decoder

  • Choi, Duk-Gun;Kim, Min-Hyuk;Jeong, Jin-Hee;Jung, Ji-Won;Bae, Jong-Tae;Choi, Seok-Soon;Yun, Young
    • ETRI Journal
    • /
    • v.29 no.3
    • /
    • pp.363-370
    • /
    • 2007
  • In this paper, we propose a flexible turbo decoding algorithm for a high order modulation scheme that uses a standard half-rate turbo decoder designed for binary quadrature phase-shift keying (B/QPSK) modulation. A transformation applied to the incoming I-channel and Q-channel symbols allows the use of an off-the-shelf B/QPSK turbo decoder without any modifications. Iterative codes such as turbo codes process the received symbols recursively to improve performance. As the number of iterations increases, the execution time and power consumption also increase. The proposed algorithm reduces the latency and power consumption by combination of the radix-4, dual-path processing, parallel decoding, and early-stop algorithms. We implement the proposed scheme on a field-programmable gate array and compare its decoding speed with that of a conventional decoder. The results show that the proposed flexible decoding algorithm is 6.4 times faster than the conventional scheme.

  • PDF

Bit-to-Symbol Mapping Strategy for LDPC-Coded Turbo Equalizers Over High Order Modulations (LDPC 부호 기반의 터보 등화기에 적합한 고차 변조 심볼사상)

  • Lee, Myung-Kyu;Yang, Kyeong-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.5C
    • /
    • pp.432-438
    • /
    • 2010
  • In this paper we study the effect of bit-to-symbol mappings on the convergence behavior of turbo equalizers employing low-density parity-check (LDPC) codes over high order modulations. We analyze the effective SNR of the outputs from linear minimum mean-squared error (MMSE) equalizers and the convergence property of LDPC decoding for different symbol mappings. Numerical results show that the bit-reliability (BR) mapping provides better performance than random mapping in LDPC-coded turbo equalizers over high order modulations. We also verify the effect of symbol mappings through the noise threshold and error performance.

A High Speed Block Turbo Code Decoding Algorithm and Hardware Architecture Design (고속 블록 터보 코드 복호 알고리즘 및 하드웨어 구조 설계)

  • 유경철;신형식;정윤호;김근회;김재석
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.7
    • /
    • pp.97-103
    • /
    • 2004
  • In this paper, we propose a high speed block turbo code decoding algorithm and an efficient hardware architecture. The multimedia wireless data communication systems need channel codes which have the high-performance error correcting capabilities. Block turbo codes support variable code rates and packet sizes, and show a high performance due to a soft decision iteration decoding of turbo codes. However, block turbo codes have a long decoding time because of the iteration decoding and a complicated extrinsic information operation. The proposed algorithm using the threshold that represents a channel information reduces the long decoding time. After the threshold is decided by a simulation result, the proposed algorithm eliminates the calculation for the bits which have a good channel information and assigns a high reliability value to the bits. The threshold is decided by the absolute mean and the standard deviation of a LLR(Log Likelihood Ratio) in consideration that the LLR distribution is a gaussian one. Also, the proposed algorithm assigns '1', the highest reliable value, to those bits. The hardware design result using verilog HDL reduces a decoding time about 30% in comparison with conventional algorithm, and includes about 20K logic gate and 32Kbit memory sizes.

Optimum Turbo Equalization Method based on Layered Space Time Codes in Underwater Communications (MIMO 수중통신에서 최적의 터보 등화 기법)

  • Kim, Tae-Hun;Jung, Ji-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.5
    • /
    • pp.1042-1050
    • /
    • 2014
  • The performance of underwater acoustic(UWA) communication system is sensitive to the Inter-Symbol Interference(ISI) due to delay spread develop of multipath signal propagation. And due to limited frequency using acoustic wave, UWA is a low transmission rate. Thus, it is necessary technique of Space-time code, equalizer and channel code to improve transmission speed and eliminate ISI. In this paper, UWA communication system were analyzed by simulation using these techniques. In the result of simulation, the proposed Turbo Equalization method based on layered Space Time Codes has improved performance compared to conventional UWA communication.

Implementation of UEP using Turbo Codes and EREC Algorithm for Video Transmission (동영상 전송을 위하여 터보코드와 EREC알고리즘을 이용한 UEP설계)

  • 심우성;허도근
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.7A
    • /
    • pp.994-1004
    • /
    • 2000
  • In this paper, bitstreams are composed of using H.263 for a moving picture coding in the band-limited and error-prone environment such as wireless environment. EREC sub-frames are implemented by applying the proposed EREC algorithm in order to be UEP for the real data parts of implemented bitstreams. Because those are able to do resynchronization with a block unit, propagation of the error can be minimized, and the position of the important bits such as INTRADC and MVD can be known. Class is separated using the position of these important bits, and variable puncturing tables are designed by the class informations and the code rates of turbo codes are differently designed in according to the class. Channel coding used the turbo codes, and an interleaver to be designed in the turbo codes does not eliminate redundancy bits of the important bits in applying variable code rates of EREC sub-frames unit and is always the same at the transmitter and the receiver although being variable frame size. As a result of simulation, UEP with the code rate similar to EEP is obtained a improved result in the side of bit error probability. And the result of applying it to image knows that the subjective and objective quality have been improved by the protection of important bits.

  • PDF

Performance Analysis of Turbo Codes for LEO Satellite Communication Channel (저궤도 위성통신 채널에서 터보부호의 성능분석)

  • 강군석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.9A
    • /
    • pp.1313-1321
    • /
    • 2000
  • In recent years LEO(Low Earth Orbit) satellite communication systems have gained a lot of interest as high speed multimedia services by satellite are about to be provided. It is mandatory to use very efficient ECC(Error Correcting Code) to support high speed multimedia services over LEO satellite channel. Turbo codes developed by Berrou et al. in 1993 have been actively researched since it can achieve a performance close to the Shannon limit. In this paper, a LEO satellite channel model is adopted and the fading characteristics of LEO satellite channel are analyzed for the change of elevation angle in various propagation environments. The performance of turbo code is analyzed and compared to that of conventional convolutional code using the satellite channel model. In the simulation results using the Globalstar orbit constellations, performance of turbo codes shows 1.0~2.0dB coding gain compared to that of convolutional codes over all elevation angle and propagation environment ranges we have investigated. The performance difference resulting from the change of elevation angle in various propagation environments and the performance of different ECC are analyzed in detail, so that the results can be applied to choose an appropriate ECC scheme for various system environment.

  • PDF

Faster Than Nyquist Transmission with Multiple Channel Codes (다중 채널 부호를 이용한 FTN 전송 시스템)

  • Kang, Donghoon;Kim, Haeun;Yun, Joungil;Lim, Hyoungsoo;Oh, Wangrok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.2
    • /
    • pp.157-162
    • /
    • 2016
  • The performance of turbo-like codes highly depends on their frame size and thus, the bit error rate performance of turbo-like codes can be improved by increasing the frame size. Unfortunately, increasing the frame size of channel codes induces some drawbacks such as the increase of not only encoding and decoding complexity but also transmission and decoding latencies. On the other hand, a faster than Nyquist (FTN) transmission causes intentional inter-symbol interference (ISI) and thus, induces some correlation among the transmission symbols. In this paper, we propose an FTN transmission with multiple channel codes. By exploiting the correlation among the modulated symbols, multiple code frames can be regarded as a code frame with a lager frame size. Due to the inherent parallel encoding scheme of proposed scheme, parallel decoding can be easily implemented.

Turbo Decoding for Precoded Systems over Multipath Fading Channels

  • Zhang, Qing;Le-Ngoc, THo
    • Journal of Communications and Networks
    • /
    • v.6 no.3
    • /
    • pp.203-208
    • /
    • 2004
  • A combined precoding and turbo decoding strategy for multi-path frequency-selective fading channels is presented. The precoder and multi-path fading channel are jointly modeled as a finite-state probabilistic channel to provide the multi-stage turbo decoder with its statistics information. Both a priori and a posteriori probabilities are used in the metric computation to improve the system performance. Structures of the combined turbo-encoder, interleaver, and precoder in the transmitter and two-stage turbo decoder in the receiver are described. Performance of the proposed scheme in fixed, Rician and Rayleigh multi-path fading channels are evaluated by simulation. The results indicate that the combined precoding and two-stage turbo decoding strategy provides a considerable performance improvement while maintaining the same inner structure of a conventional turbo decoder.