• Title/Summary/Keyword: Tunneling

Search Result 1,541, Processing Time 0.03 seconds

A Study on Analysis and Control of Circumvent Connection to the Private Network of Corporation (기업 사설 네트워크 우회 접속 분석 및 통제 대책 연구)

  • Lee, Chul-Won;Kim, Huy-Kang;Lim, Jong-In
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.20 no.6
    • /
    • pp.183-194
    • /
    • 2010
  • A company's private network protected by a firewall and NAT(Network Address Translation) is not accessible directly through an external internet. However, as Reverse Connection technology used by NetCat extends to the technologies such as SSH Tunnel or HTTP Tunnel, now anyone can easily access a private network of corporation protected by a firewall and NAT. Furthermore, while these kinds of technologies are commercially stretching out to various services such as a remote control and HTTP Tunnel, security managers in a company or general users are confused under the circumstances of inner or outer regulation which is not allowed to access to an internal system with a remote control. What is more serious is to make a covert channel invading a company's private network through a malicious code and all that technologies. By the way, what matters is that a given security system such as a firewall cannot shield from these perceived dangers. So, we analyze the indirect access of technological methods and the status quo about a company's internal network and find a solution to get rid of the related dangers.

Electrical Properties for Enhanced Band Offset and Tunneling with a-SiOx:H/a-si Structure (a-SiOx:H/c-Si 구조를 통한 향상된 밴드 오프셋과 터널링에 대한 전기적 특성 고찰)

  • Kim, Hongrae;Pham, Duy phong;Oh, Donghyun;Park, Somin;Rabelo, Matheus;Kim, Youngkuk;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.4
    • /
    • pp.251-255
    • /
    • 2021
  • a-Si is commonly considered as a primary candidate for the formation of passivation layer in heterojunction (HIT) solar cells. However, there are some problems when using this material such as significant losses due to recombination and parasitic absorption. To reduce these problems, a wide bandgap material is needed. A wide bandgap has a positive influence on effective transmittance, reduction of the parasitic absorption, and prevention of unnecessary epitaxial growth. In this paper, the adoption of a-SiOx:H as the intrinsic layer was discussed. To increase lifetime and conductivity, oxygen concentration control is crucial because it is correlated with the thickness, bonding defect, interface density (Dit), and band offset. A thick oxygen-rich layer causes the lifetime and the implied open-circuit voltage to drop. Furthermore the thicker the layer gets, the more free hydrogen atoms are etched in thin films, which worsens the passivation quality and the efficiency of solar cells. Previous studies revealed that the lifetime and the implied voltage decreased when the a-SiOx thickness went beyond around 9 nm. In addition to this, oxygen acted as a defect in the intrinsic layer. The Dit increased up to an oxygen rate on the order of 8%. Beyond 8%, the Dit was constant. By controlling the oxygen concentration properly and achieving a thin layer, high-efficiency HIT solar cells can be fabricated.

Comparison of Liquefaction Assessment Results with regard to Geotechnical Information DB Construction Method for Geostatistical Analyses (지반 보간을 위한 지반정보DB 구축 방법에 따른 액상화 평가 결과 비교)

  • Kang, Byeong-Ju;Hwang, Bum-Sik;Bang, Tea-Wan;Cho, Wan-Jei
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.4
    • /
    • pp.59-70
    • /
    • 2022
  • There is a growing interest in evaluating earthquake damage and determining disaster prevention measures due to the magnitude 5.8 earthquake in Pohang, Korea. Since the liquefaction phenomena occurred extensively in the residential area as a result of the earthquake, there was a demand for research on liquefaction phenomenon evaluation and liquefaction disaster prediction. Liquefaction is defined as a phenomenon where the strength of the ground is completely lost due to a sudden increase in excess pore water pressure caused due to large dynamic stress, such as an earthquake, acting on loose sand particles in a short period of time. The liquefaction potential index, which can identify the occurrence of liquefaction and predict the risk of liquefaction in a targeted area, can be used to create a liquefaction hazard map. However, since liquefaction assessment using existing field testing is predicated on a single borehole liquefaction assessment, there has been a representative issue for the whole targeted area. Spatial interpolation and geographic information systems can help to solve this issue to some extent. Therefore, in order to solve the representative problem of geotechnical information, this research uses the kriging method, one of the geostatistical spatial interpolation techniques, and constructs a geotechnical information database for liquefaction and spatial interpolation. Additionally, the liquefaction hazard map was created for each return period using the constructed geotechnical information database. Cross validation was used to confirm the accuracy of this liquefaction hazard map.

A Study on the Particle Size of Sand to Prevent Penetration of Subterranean Termite (Reticulitermes speratus kyushuensis) in Wooden Buildings (국내 지중흰개미의 목조건축물 유입 차단을 위한 모래의 적정 입도 연구)

  • Kim, Si Hyun;Kim, Tae Heon;Chung, Yong Jae
    • Journal of Conservation Science
    • /
    • v.38 no.2
    • /
    • pp.80-86
    • /
    • 2022
  • Termites cause massive damage to wooden architectural heritage structures. Chemical treatments have been commonly used to control them. In foreign countries, physical barriers made of sheet and particles impenetrable to termite are being used as an alternative to the chemical method. To study the efficacy of physical barriers, we investigated the appropriate sand particle size that can prevent the penetration of R. speratus kyushuensis. Upon evaluating the barrier properties of sand with particle sizes ranging from 0.85 to 4.00 mm, the penetration of termites was found to be effectively blocked at a particle size range of 1.00 to 2.80 mm. At smaller particle sizes, termites managed to move the sand particles and build an almost linear mud tube to penetrate the sand layer. At larger particle sizes, the termites could penetrate the sand layer by passing through the sand gaps.

A Study on Improved Open-Circuit Voltage Characteristics Through Bi-Layer Structure in Heterojunction Solar Cells (이종접합 태양전지에서의 Bi-Layer 구조를 통한 향상된 개방전압특성에 대한 고찰)

  • Kim, Hongrae;Jeong, Sungjin;Cho, Jaewoong;Kim, Sungheon;Han, Seungyong;Dhungel, Suresh Kumar;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.6
    • /
    • pp.603-609
    • /
    • 2022
  • Passivation quality is mainly governed by epitaxial growth of crystalline silicon wafer surface. Void-rich intrinsic a-Si:H interfacial layer could offer higher resistivity of the c-Si surface and hence a better device efficiency as well. To reduce the resistivity of the contact area, a modification of void-rich intrinsic layer of a-Si:H towards more ordered state with a higher density is adopted by adapting its thickness and reducing its series resistance significantly, but it slightly decreases passivation quality. Higher resistance is not dominated by asymmetric effects like different band offsets for electrons or holes. In this study, multilayer of intrinsic a-Si:H layers were used. The first one with a void-rich was a-Si:H(I1) and the next one a-SiOx:H(I2) were used, where a-SiOx:H(I2) had relatively larger band gap of ~2.07 eV than that of a-Si:H (I1). Using a-SiOx:H as I2 layer was expected to increase transparency, which could lead to an easy carrier transport. Also, higher implied voltage than the conventional structure was expected. This means that the a-SiOx:H could be a promising material for a high-quality passivation of c-Si. In addition, the i-a-SiOx:H microstructure can help the carrier transportation through tunneling and thermal emission.

Effects of parallel undercrossing shield tunnels on river embankment: Field monitoring and numerical analysis

  • Li'ang Chen;Lingwei Lu;Zhiyang Tang;Shixuan Yi;Qingkai Wang;Zhibo Chen
    • Geomechanics and Engineering
    • /
    • v.35 no.1
    • /
    • pp.29-39
    • /
    • 2023
  • As the intensity of urban underground space development increases, more and more tunnels are planned and constructed, and sometimes it is inevitable to encounter situations where tunnels have to underpass the river embankments. Most previous studies involved tunnels passing river embankments perpendicularly or with large intersection angle. In this study, a project case where two EPB shield tunnels with 8.82 m diameter run parallelly underneath a river embankment was reported. The parallel length is 380 m and tunnel were mainly buried in the moderate / slightly weathered clastic rock layer. The field monitoring result was presented and discussed. Three-dimensional back-analysis were then carried out to gain a better understanding the interaction mechanisms between shield tunnel and embankment and further to predict the ultimate settlement of embankment due to twin-tunnel excavation. Parametrical studies considering effect of tunnel face pressure, tail grouting pressure and volume loss were also conducted. The measured embankment settlement after the single tunnel excavation was 4.53 mm ~ 7.43 mm. Neither new crack on the pavement or cavity under the roadbed was observed. It is found that the more degree of weathering of the rock around the tunnel, the greater the embankment settlement and wider the settlement trough. Besides, the latter tunnel excavation might cause larger deformation than the former tunnel excavation if the mobilized plastic zone overlapped. With given geometry and stratigraphic condition in this study, the safety or serviceability of the river embankment would hardly be affected since the ultimate settlement of the embankment after the twin-tunnel excavation is within the allowable limit. Reasonable tunnel face pressure and tail grouting pressure can to some extent suppress the settlement of the embankment. The recommended tunnel face pressure and tail grouting pressure are 300 kPa and 550 kPa in this study, respectively. However, the volume loss plays the crucial role in the tunnel-embankment interaction. Controlling and compensating the tunneling induced volume loss is the most effective measure for river embankment protection. Additionally, reinforcing the embankment with cement mixing pile in advance is an alternative option in case the predicted settlement exceeds allowable limit.

Fracture Behaviors of Jointed Rock Model Containing an Opening Under Biaxial Compression Condition (이축압축 조건에서 공동이 존재하는 유사 절리암반 모델의 파괴 거동)

  • SaGong, Myung;Yoo, Jea-Ho;Park, Du-Hee;Lee, J.S.
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.10
    • /
    • pp.17-30
    • /
    • 2009
  • Underground construction such as tunneling can induce damages on the surrounding rock mass, due to the stress concentration of in situ stresses and excessive energy input during construction sequence, such as blasting. The developed damage on the rock mass can have substantial influence on the mechanical and hydraulic behaviors of the rock masses around a tunnel. In this study, investigation on the generation of damage around an opening in a jointed rock model under biaxial compression condition was conducted. The joint dip angles employed are 30, 45, and 60 degrees to the horizontal, and the synthetic rock mass was made using early strength cement and water. From the biaxial compression test, initiation and propagation of tensile cracks at norm to the joint angle were found. The propagated tensile cracks eventually developed rock blocks, which were dislodged from the rock mass. Furthermore, the propagation process of the tensile cracks varies with joint angle: lower joint angle model shows more stable and progressive tensile crack propagation. The development of the tensile crack can be explained under the hypothesis that the rock segment encompassed by the joint set is subjected to the developing moment, which can be induced by the geometric irregularity around the opening in the rock model. The experiment results were simulated by using discrete element method PFC 2D. From the simulation, as has been observed from the test, a rock mass with lower joint angle produces wider damage region and rock block by tensile cracks. In addition, a rock model with lower joint angle shows progressive tensile cracks generation around the opening from the investigation of the interacted tensile cracks.

Rock Bolt Integrity Assessment in Time-Frequency Domain : In-situ Application at Hard Rock Site (유도파를 이용한 시간-주파수 영역 해석을 통한 록볼트 건전도 실험의 경암지반 현장 적용성 평가)

  • Lee, In-Mo;Han, Shin-In;Min, Bok-Ki;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.12
    • /
    • pp.5-12
    • /
    • 2009
  • As rock bolts become one of the main support systems in tunnels and underground structures, the integrity of the rock bolts affects the safety of these structures. The purpose of this study is the evaluation of rock bolt integrity using wavelet transforms of the guided ultrasonic waves by using transmission test in the field. After several rock bolts with various defect ratios are embedded into a large scale concrete block and rock mass, guided waves are generated by a piezo disk element and measured by an acoustic emission (AE) sensor. The captured signals are analyzed in the time-frequency domain using the wavelet transform based on a Gabor wavelet. Peak values in the time-frequency domain represent the interval of travel time of each echo. The energy velocities of the guided waves increase with an increase in the defect ratio. The suitable curing time for the evergy velocity analysis is proposed by the laboratory test, and in-situ tests are performed in two tunnelling sites to verify the applicability of rock bolt integrity tests performed after proposed curing time. This study proves that time-frequency domain analysis is an effective tool for the evaluation of the rock bolt integrity.

A Study on the Indirect Benefits of Undergrounding Overhead Power Line Projects in an Urban Area Using Contingent Valuation Method (조건부가치측정법(CVM)을 이용한 도심지 송전선로 지중화사업의 간접편익 추정)

  • Park, Chan-Ho;Kim, Sung-Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6D
    • /
    • pp.871-879
    • /
    • 2008
  • Recently, as there are a rise in the standard of living and higher concerns of an electromagnetic wave and environment, undergrounding the aerial cables which are supported by large pylons and generally considered as the least attractive feature of an urban area is on an increasing trend to improve aesthetic benefits and electric reliability. This study applied Contingent Valuation Method (CVM) which is expected to become an effective tool to measure indirect benefit to estimate the substantial benefits of undergrounding overhead power line projects in an urban area. The tunneling construction project of the 345kV Shinsungnam electric power cable in Seongnam city was selected and a hypothetical scenario was given to respondents to determine their levels of Willingness to Pay (WTP) for undergrounding overhead power lines. The result from the estimation of the WTP of undergrounding overhead power lines in Seongnam city was calculated as approximately 17.1 billion won. Placing existing overhead lines underground is difficult to justify economically. Most undergrounding costs appear to be justified by aesthetic and public policy considerations. Therefore, considering the result of this study, undergrounding overhead power lines is of great benefit to public.

Development of 4D System based on New Methodology for Visualizing Construction Schedule Data for Civil Engineering Projects (토목시설물 공사관리 시각화를 취한 4D시스템 적용방안)

  • Kang, Leen Seok;Jee, Sang Bok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1D
    • /
    • pp.95-103
    • /
    • 2006
  • One of the main functions of the 4D system includes visualizing numerical schedule data in construction. The existing 4D tools have an excellent function for simulating building projects that all activities are progressed according to vertical work zone. However, it is not easy to implement all of it in the civil engineering project because the construction activities of highway and railway projects are progressed on the horizontal work zone and the 4D simulation for those projects should include earthwork objects that depend on the natural ground condition. This study suggests a new methodology for improving those limitations of 4D system for the civil engineering project and develops a new system by the suggested methodology. To verify the developed system, this study attempts to simulate 4D object for horizontal elements such as earthwork, paving work and tunneling work. The morphing and multi-texturing techniques developed in the study can be new approaches to simulate 4D object for the earthwork such as cutting and banking whose activities are progressed on the natural ground condition. The research results can be expected as a draft function for improving the application of 4D system in civil engineering projects.