DOI QR코드

DOI QR Code

Comparison of Liquefaction Assessment Results with regard to Geotechnical Information DB Construction Method for Geostatistical Analyses

지반 보간을 위한 지반정보DB 구축 방법에 따른 액상화 평가 결과 비교

  • Kang, Byeong-Ju (Geotechnical & Tunneling Dept., Kunhwa Engrg. & Consulting Co., Ltd.) ;
  • Hwang, Bum-Sik (Korea Expressway Corporation Research Institute) ;
  • Bang, Tea-Wan (Dept. of Civil & Environmental Engrg., Dankook Univ.) ;
  • Cho, Wan-Jei (Dept. of Civil & Environmental Engrg., Dankook Univ.,)
  • 강병주 ((주)건화 지반터널부) ;
  • 황범식 (한국도로공사 도로교통연구원 안전혁신연구실) ;
  • 방태완 (단국대학교 토목환경공학과 통합과정) ;
  • 조완제 (단국대학교 토목환경공학과)
  • Received : 2022.03.15
  • Accepted : 2022.03.31
  • Published : 2022.04.30

Abstract

There is a growing interest in evaluating earthquake damage and determining disaster prevention measures due to the magnitude 5.8 earthquake in Pohang, Korea. Since the liquefaction phenomena occurred extensively in the residential area as a result of the earthquake, there was a demand for research on liquefaction phenomenon evaluation and liquefaction disaster prediction. Liquefaction is defined as a phenomenon where the strength of the ground is completely lost due to a sudden increase in excess pore water pressure caused due to large dynamic stress, such as an earthquake, acting on loose sand particles in a short period of time. The liquefaction potential index, which can identify the occurrence of liquefaction and predict the risk of liquefaction in a targeted area, can be used to create a liquefaction hazard map. However, since liquefaction assessment using existing field testing is predicated on a single borehole liquefaction assessment, there has been a representative issue for the whole targeted area. Spatial interpolation and geographic information systems can help to solve this issue to some extent. Therefore, in order to solve the representative problem of geotechnical information, this research uses the kriging method, one of the geostatistical spatial interpolation techniques, and constructs a geotechnical information database for liquefaction and spatial interpolation. Additionally, the liquefaction hazard map was created for each return period using the constructed geotechnical information database. Cross validation was used to confirm the accuracy of this liquefaction hazard map.

지진으로부터 상대적으로 안전지대라고 여겨졌던 한반도에서 2017년 규모 5.4의 강진이 포항지역에 발생함으로써 액상화 현상이 민가, 농지에서 광범위하게 나타났고 이에 액상화 현상을 예측하는 액상화 재해도 작성에 관한 연구수요가 높아지고 있다. 액상화 현상이란 느슨한 사질토에서 지진과 같은 큰 동적응력이 짧은 시간 작용할 때 과잉간극수압의 급격한 증가로 지반의 강도가 완전히 상실되는 현상을 의미한다. 액상화는 액상화 가능지수(liquefaction potential index, LPI)를 통해 평가할 수 있지만 LPI는 단일 시추공 별로 산출되기 때문에 해당지역의 대표성에 대한 문제가 발생하게 된다. 이러한 대표성의 문제는 지리정보시스템(geographic information system, GIS)을 활용한 공간보간을 통해 보완될 수 있다. 따라서 본 연구에서는 지구통계학적인 공간보간 기법 중 하나인 크리깅(kriging)을 활용하여 지반정보의 대표성 문제를 해결하고자 하였으며 액상화 평가를 위한 지반정보DB를 구축하고자 하였다. 또한 구축된 지반정보DB를 활용하여 재현주기 별 액상화 재해도를 작성하였으며 액상화 재해도 결과는 교차검증을 통하여 정밀도 검증을 수행하였다.

Keywords

Acknowledgement

본 연구는 한국연구재단 이공분야 대학중점연구소지원사업의 연구비 지원 (NRF-2018R1A6A1A07025819) "ICT 융복합 기존건축물 내진리모델링 기술 개발"에 의해 수행되었으며, 이에 깊은 감사를 드립니다.

References

  1. Baise, L. G., Higgins, R. B., and Brankman, C. M. (2006), Liquefaction Hazard Mapping-Statistical and Spatial Characterization of Susceptible Units, Journal of Geotechnical and Geoenvironmental Engineering, Vol.132, No.6, pp.705-715. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:6(705)
  2. Boulanger, R. W. and Idriss, I. M. (2004), State Normalization of Penetration Resistance and the Effect of Overburden Stress on Liquefaction Resistance, Proceedings 11th SDEE and 3rd ICEGE, Uni of California, Berkeley, CA.
  3. Chiasson, P., Lafleur, J., Soulie, M., and Law, K. T. (1995), Characterizing Spatial Variability of a Clay by Geostatistics, Canadian Geotechnical Journal, Vol.32, No.1, pp.1-10. https://doi.org/10.1139/t95-001
  4. Douglas, B. J., Olson, R. S., and Martin, G. R. (1981), Evaluation of the Cone Penetrometer Test for SPT Liquefaction Assessment, Session on In Situ Testing to Evaluate Liquefaction Susceptibility, ASCE National Convention, St. Louis, MO, October.
  5. Gang, B. J., Hwang, B. S., Park, H. W., and Cho, W. J. (2018), Optimal Input Database Construction for 3D Dredging Quantification, Journal of the Korean Geo-Environmental Society, Vol.19, No.5, pp.23-31.
  6. Hough, B. K. (1969), Basic soils engineering, Ronald Press, New York.
  7. Idriss, I. M. (1999), An update to the Seed-Idriss simplified procedure for evaluating liquefaction potential, TRB Workshop on New Approaches to Liquefaction, Publication No. FHWARD-99-165, Federal Highway Administration, January.
  8. Idriss, I. M. and Boulanger, R. W. (2003), Relating Kα and Kσ to SPT blow count and t o CPT tip resistance for use in evaluating liquefaction potential, in Proceedings of the 2003 Dam Safety Conference, ASDSO, September 7-10, Minneapolis, MN.
  9. Idriss, I. M. and Boulanger, R. W. (2008), Soil Liquefaction during Earthquakes, Earthquake Engineering Research Institute, Califonia, USA. pp.1.
  10. Iwasaki, T., Tatsuoka, K., Tokida, F., and Yasuda, S. (1978), A Practical Method for Assessing Soil Liquefaction Potential based on Case Studies at Various Sites in Japan, Proceedings of 2nd International Conference on Microzonation, National Science Foundation UNESCO, San Francisco, CA., pp.885-896.
  11. Jaksa, M. B., Kaggwa, W. S., and Brooker, P. I. (1993), Geo-statistical Modelling of the Spatial Variation of the Shear Strength of a Stiff, Overconsolidated Clay, Probabilistic Methods in Geotechnical Engineering, pp.185-194.
  12. Kang, B. J. (2019), Geotechnical Information DB Construction Method for Liquefation Assessment, master's thesis of Dankook University, pp.43-63.
  13. Kim, I. and Lee, J. (2018), Influencing Factor Analysis on Groundwater Level Fluctuation Near River, Ecology and Resilient Infrastructure, Vol.5, No.2, pp.72-81. https://doi.org/10.17820/ERI.2018.5.2.072
  14. Korea Geotechnical Society (2018), Manuals on Structural Foundation Design Criteria (established by Ministry of Land, Infrastructure, and Transport, pp.826-837.
  15. Luna, R. and Frost, J. D. (1998), Spatial Liquefaction Analysis System, Journal of Computing in Civil Engineering, Vol.12, No.1, pp.48-56. https://doi.org/10.1061/(ASCE)0887-3801(1998)12:1(48)
  16. Parsons, R. L. and Frost, J. D. (2002), Evaluating Site Investigation Quality Using GIS and Geostatistics, Journal of Geotechnical and Geoenvironmental Engineering, Vol.128, No.6, pp.451-461. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:6(451)
  17. Seed, H. B. (1983), Earthquake Resistant Design of Earth Dams in Proceedings, Symposium on Seismic Design of Embankments and Caverns, Pennsylvania, ASCE, NY, pp.41-64.
  18. Seed, H. B. and Idriss, I. M. (1971), Simplified Procedure for Evaluating Soil Liquefaction Potential, J. Soil Mechanics and Foundations Div. ASCE, 97(SM9), pp.1249-1273. https://doi.org/10.1061/JSFEAQ.0001662
  19. Seed, H. B. and Idriss, I. M. (1981), Evaluation of Liquefaction Potential of Sand Deposits Based on Observations of Performance in Previous Earthquakes, Session on In SituTesting to Evaluate Liquefaction Susceptibility, ASCE National Convention, St. Louis, MO, Oct ober.
  20. Seed, H. B., Tokimatsu, K., Harder, L. F. Jr., and Chung, R. (1984), The Influence of SPT Procedures on Soil Liquefaction Resistance Evaluations, Report No. UCB/EERC-84/15. Earthquake Engineering Research Center, University of California at Berkeley.
  21. Seed, H. B., Tokimatsu, K., Harder, L. F. Jr., and Chung, R. (1985), Influence of SPT Procedures in Soil Liquefaction Resistance Evaluations, J. Geotechnical Eng., ASCE, Vol.111, No.12, pp.1425-1445. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:12(1425)
  22. Sitharam, T. G. and Samui, P. (2007), Spatial Variability of SPT Data Using Ordinary and Disjunctive Kriging, ISGSR2007 First international Symposium on Geotechnical Safety and Risk, pp.253-264.
  23. Song, Y. W., Chung, C. K., Park, K. H., and Kim, M. G. (2018), Assessment of Liquefaction Potential Using Correlation between Shear Wave Velocity and Normalized LPI on Urban Areas of Seoul and Gyeongju, Journal of The Korean Society of Civil Engineers, Vol.38, No.2, pp.357-367. https://doi.org/10.12652/KSCE.2018.38.2.0357
  24. Soulie, M., Montes, P., and Silvestri, V. (1990), Modelling Spatial Variability of Soil Parameters, Canadian Geotechnical Journal, Vol.27, No.5, pp.617-630. https://doi.org/10.1139/t90-076
  25. Yoo, S. D., Kim, H. T., Song, B. W., and Lee, H. K. (2005), Assessment of Liquefaction Potential on Non-Plastic Silty Soil Layers Using Geographic Information System (GIS) and Standard Penetration Test Results, Journal of the Korean Geoenvironmental Society, Vol.6, No.2, pp.5-14.
  26. Youd, T. L., Idriss, I. M., Andrus, R. D., Arango, I., Castro, G., Christian, J. T., Dobry, R., Finn, W. D. L., Harder, L. F., Hynes, M. E., Ishihara, K., Koester, J. P., Liao, S. S. C., Marcuson, W. F., Martin, G. R., Mitchell, J. K., Moriwaki, Y., Power, M. S., Robertson, P. K., Seed, R. B., and Stokoe, K. H. (2001), Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils, J. Geotechnical and Geoenvironmental Eng., ASCE, 127(10), pp.817-833. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:10(817)
  27. Zhou, S. (1980), Evaluation of the Liquefaction of Sand by Static Cone Penetration Test, 7th World Conference on Earthquake Engineering, Istanbul, Turkey, Vol.3, pp.156-162.