Browse > Article
http://dx.doi.org/10.4313/JKEM.2021.34.4.251

Electrical Properties for Enhanced Band Offset and Tunneling with a-SiOx:H/a-si Structure  

Kim, Hongrae (Department of Electrical and Computer Engineering, Sungkyunkwan University)
Pham, Duy phong (Department of Electrical and Computer Engineering, Sungkyunkwan University)
Oh, Donghyun (Department of Electrical and Computer Engineering, Sungkyunkwan University)
Park, Somin (Department of Electrical and Computer Engineering, Sungkyunkwan University)
Rabelo, Matheus (Interdisciplinary Program in Photovoltaic System Engineering, Sungkyunkwan University)
Kim, Youngkuk (College of Information and Communication Engineering, Sungkyunkwan University)
Yi, Junsin (College of Information and Communication Engineering, Sungkyunkwan University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.34, no.4, 2021 , pp. 251-255 More about this Journal
Abstract
a-Si is commonly considered as a primary candidate for the formation of passivation layer in heterojunction (HIT) solar cells. However, there are some problems when using this material such as significant losses due to recombination and parasitic absorption. To reduce these problems, a wide bandgap material is needed. A wide bandgap has a positive influence on effective transmittance, reduction of the parasitic absorption, and prevention of unnecessary epitaxial growth. In this paper, the adoption of a-SiOx:H as the intrinsic layer was discussed. To increase lifetime and conductivity, oxygen concentration control is crucial because it is correlated with the thickness, bonding defect, interface density (Dit), and band offset. A thick oxygen-rich layer causes the lifetime and the implied open-circuit voltage to drop. Furthermore the thicker the layer gets, the more free hydrogen atoms are etched in thin films, which worsens the passivation quality and the efficiency of solar cells. Previous studies revealed that the lifetime and the implied voltage decreased when the a-SiOx thickness went beyond around 9 nm. In addition to this, oxygen acted as a defect in the intrinsic layer. The Dit increased up to an oxygen rate on the order of 8%. Beyond 8%, the Dit was constant. By controlling the oxygen concentration properly and achieving a thin layer, high-efficiency HIT solar cells can be fabricated.
Keywords
Thin film; HIT (heterojunction) solar cell; Amorphous silicon oxide; Wide band gap; PECVD;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. I. Pankove and M. L. Tarng, Appl. Phys. Lett., 34, 156 (1979). [DOI: https://doi.org/10.1063/1.90711]   DOI
2 S. Y. Herasimenka, W. J. Dauksher, and S. G. Bowden, Appl. Phys. Lett., 103, 053511 (2013). [DOI: https://doi.org/10.1063/1.4817723]   DOI
3 S. De Wolf, C. Ballif, and M. Kondo, Phys. Rev. B, 85, 113302 (2012). [DOI: https://doi.org/10.1103/PhysRevB.85.113302]   DOI
4 M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger, M. Yoshita, and A.W.Y. Ho-Baillie, Prog. Photovoltaics, 27, 3 (2019). [DOI: https://doi.org/10.1002/pip. 3102]   DOI
5 M. Tanaka, M. Taguchi, T. Matsuyama, T. Sawada, S. Tsuda, S. Nakano, H. Hanafusa, and Y. Kuwano, Jpn. J. Appl. Phys., 31, 3518 (1992). [DOI: https://doi.org/10.1143/JJAP.31.3518]   DOI
6 H. Fujiwara and M. Kondo, J. Appl. Phys., 101, 054516 (2007). [DOI: https://doi.org/10.1063/1.2559975]   DOI
7 D.A.P. Bulla and N. I. Morimoto, Thin Solid Films, 334, 60 (1998). [DOI: https://doi.org/10.1016/S0040-6090(98)01117-1]   DOI
8 D. Pysch, C. Meinhard, N. P. Harder, M. Hermle, and S. W. Glunz, J. Appl. Phys., 110, 094516 (2011). [DOI: https://doi.org/10.1063/1.3650255]   DOI
9 H. W. Du, J. Yang, Y. Li, M. Gao, S. M. Chen, Z. S. Yu, F. Xu, and Z. Q. Ma, J. Phys. D: Appl. Phys., 48, 355101 (2015). [DOI: https://doi.org/10.1088/0022-3727/48/35/355101]   DOI
10 K. Ding, U. Aeberhard, F. Ginger, and U. Rau, J. Appl. Phys., 113, 134501 (2013). [DOI: https://doi.org/10.1063/1.4798603]   DOI
11 Y. Du, X. Du, and S. M. George, Thin Solid Films, 491, 43 (2005). [DOI: https://doi.org/10.1016/j.tsf.2005.05.051]   DOI
12 S. J. Won, J. R. Kim, S. Suh, N. I. Lee, C. S. Hwang, and H. J. Kim, ACS Appl. Mater. Interfaces, 3, 1633 (2011). [DOI: https://doi.org/10.1021/am200176j]   DOI
13 S. E. Potts, H. B. Profijt, R. Roelofs, and W.M.M. Kessels, Chem. Vap. Deposition, 19, 125 (2013). [DOI: https://doi.org/10.1002/cvde.201207033]   DOI
14 K. Pfeiffer, S. Shestaeva, A. Bingel, P. Munzert, U. Schulz, N. Kaiser, A. Tunnermann, and A. Szeghalmi, Optical Systems Design 2015: Advances in Optical Thin Films V, 9627, 96270Q (2015). [DOI: https://doi.org/10.1117/12.2191283]   DOI
15 A. Mallikarjunan, H. Chandra, M. Xiao, X. Lei, R. M. Pearlstein, H. R. Bowen, M. L. O'Neill, A. Derecskei-Kovacs, and B. Han, J. Vac. Sci. Technol., A, 33, 01A137 (2015). [DOI: https://doi.org/10.1116/1.4903275]   DOI
16 G. Dingemans, C.A.A. van Helvoirt, D. Pierreux, W. Keuning, and W.M.M. Kessels, J. Electrochem. Soc., 159, H277 (2012). [DOI: https://doi.org/10.1149/2.067203jes]   DOI
17 L. Martini, L. Serenelli, F. Menchini, M. lzzi, and M. Tucci, Prog. Photovoltaics: Process. Res. Appl., 28, 307 (2020). [DOI: https://doi.org/10.1002/pip.3241]   DOI
18 M. Liebhaber, M. Mews, T. F. Schulze, L. Korte, B. Rech, and K. Lips, Appl. Phys. Lett., 106, 031601 (2015). [DOI: https://doi.org/10.1063/1.4906195]   DOI
19 A. O. Zamchiy, E. A. Baranov, I. E. Merkulova, S. Y. Khmel, E. A. Mazimovskiy, J. Non-Cryst. Solids, 518, 43 (2019). [DOI: https://doi.org/10.1016/j.jnoncrysol.2019.05.015]   DOI
20 R. S. Bonilla, B. Hoex, P. Hamer, and P. R. Wilshaw, Phys. Status Solidi A, 214, 1700293 (2017). [DOI: https://doi.org/10.1002/pssa.201700293]   DOI
21 S. De Wolf and M. Kondo, Appl. Phys. Lett., 90, 042111 (2007). [DOI: https://doi.org/10.1063/1.2432297]   DOI
22 T. G. Allen, J. Bullock, X. Yang, A. Javey, and S. De Wolf, Nat. Energy, 4, 914 (2019). [DOI: https://doi.org/10.1038/s41560-019-0463-6]   DOI
23 Martin Lutz Liebhaber, Silicon Heterojunction Solar Cells: From Conventional Concepts to a Singlet Fission Multi-exciton Generating Hybrid Approach, refubium.fu-berlin.de/handle/fub188/4394 (2017).
24 S. Wang, V. Smirnov, T. Chen, B. Hollander, X. Zhang, S. Xiong, Y. Zhao, and F. Finger, Jpn. J. Appl. Phys., 54, 011401 (2015). [DOI: https://doi.org/10.7567/JJAP.54.011401]   DOI
25 E. Hall, Master Thesis, Synthesis and Characterisation of PEDOT:PSS/Silicon Interfaces for Use in Low Cost, High Efficiency Solar Cells, p. 1-103, Uio: Department of Chemistry Universirty of Oslo, Oslo (2020). [https://www.duo.uio.no/handle/10852/79671]
26 K. Ohdaira, T. Oikawa, K. Higashimine, and H. Matsumura, Curr. Appl. Phys., 16, 1026 (2016). [DOI: https://doi.org/10.1016/j.cap.2016.06.001]   DOI
27 D. Hiller, R. Zierold, J. Bachmann, M. Alexe, Y. Yang, J. W. Gerlach, A. Stesmans, M. Jivanescu, U. Muller, J. Vogt, H. Hilmer, P. Loper, M. Kunle, F. Munnik, K. Nielsch, and M. Zacharias, J. Appl. Phys., 107, 064314 (2010). [DOI: https://doi.org/10.1063/1.3327430]   DOI
28 D. Choi, B. K. Kim, K. B. Chung, and J. S. Park, Mater. Res. Bull., 47, 3004 (2012). [DOI: https://doi.org/10.1016/j. materresbull.2012.04.093]   DOI
29 J. F. Chen, S. S. Zhao, L. L. Yan, H. Z. Ren, C. Han, D. K. Zhang, C. C. Wei, G. C. Wang, G. F. Hou, Y. Zhao, and X. D. Zhang, Chin. Phys. B, 29, 038801 (2020). [DOI: https://doi.org/10.1088/1674-1056/ab6c47]   DOI