DOI QR코드

DOI QR Code

a-SiOx:H/c-Si 구조를 통한 향상된 밴드 오프셋과 터널링에 대한 전기적 특성 고찰

Electrical Properties for Enhanced Band Offset and Tunneling with a-SiOx:H/a-si Structure

  • 김홍래 (성균관대학교 전자전기컴퓨터공학과) ;
  • 팜뒤퐁 (성균관대학교 전자전기컴퓨터공학과) ;
  • 오동현 (성균관대학교 전자전기컴퓨터공학과) ;
  • 박소민 (성균관대학교 전자전기컴퓨터공학과) ;
  • 라벨로 마테우스 (성균관대학교 태양광시스템공학협동과정) ;
  • 김영국 (성균관대학교 정보통신대학) ;
  • 이준신 (성균관대학교 정보통신대학)
  • Kim, Hongrae (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Pham, Duy phong (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Oh, Donghyun (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Park, Somin (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Rabelo, Matheus (Interdisciplinary Program in Photovoltaic System Engineering, Sungkyunkwan University) ;
  • Kim, Youngkuk (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Yi, Junsin (College of Information and Communication Engineering, Sungkyunkwan University)
  • 투고 : 2021.05.10
  • 심사 : 2021.06.01
  • 발행 : 2021.07.01

초록

a-Si is commonly considered as a primary candidate for the formation of passivation layer in heterojunction (HIT) solar cells. However, there are some problems when using this material such as significant losses due to recombination and parasitic absorption. To reduce these problems, a wide bandgap material is needed. A wide bandgap has a positive influence on effective transmittance, reduction of the parasitic absorption, and prevention of unnecessary epitaxial growth. In this paper, the adoption of a-SiOx:H as the intrinsic layer was discussed. To increase lifetime and conductivity, oxygen concentration control is crucial because it is correlated with the thickness, bonding defect, interface density (Dit), and band offset. A thick oxygen-rich layer causes the lifetime and the implied open-circuit voltage to drop. Furthermore the thicker the layer gets, the more free hydrogen atoms are etched in thin films, which worsens the passivation quality and the efficiency of solar cells. Previous studies revealed that the lifetime and the implied voltage decreased when the a-SiOx thickness went beyond around 9 nm. In addition to this, oxygen acted as a defect in the intrinsic layer. The Dit increased up to an oxygen rate on the order of 8%. Beyond 8%, the Dit was constant. By controlling the oxygen concentration properly and achieving a thin layer, high-efficiency HIT solar cells can be fabricated.

키워드

과제정보

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korean government (MOTIE) (grant number 20203030010310).

참고문헌

  1. M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger, M. Yoshita, and A.W.Y. Ho-Baillie, Prog. Photovoltaics, 27, 3 (2019). [DOI: https://doi.org/10.1002/pip. 3102]
  2. S. Y. Herasimenka, W. J. Dauksher, and S. G. Bowden, Appl. Phys. Lett., 103, 053511 (2013). [DOI: https://doi.org/10.1063/1.4817723]
  3. J. I. Pankove and M. L. Tarng, Appl. Phys. Lett., 34, 156 (1979). [DOI: https://doi.org/10.1063/1.90711]
  4. S. De Wolf, C. Ballif, and M. Kondo, Phys. Rev. B, 85, 113302 (2012). [DOI: https://doi.org/10.1103/PhysRevB.85.113302]
  5. M. Tanaka, M. Taguchi, T. Matsuyama, T. Sawada, S. Tsuda, S. Nakano, H. Hanafusa, and Y. Kuwano, Jpn. J. Appl. Phys., 31, 3518 (1992). [DOI: https://doi.org/10.1143/JJAP.31.3518]
  6. H. Fujiwara and M. Kondo, J. Appl. Phys., 101, 054516 (2007). [DOI: https://doi.org/10.1063/1.2559975]
  7. S. De Wolf and M. Kondo, Appl. Phys. Lett., 90, 042111 (2007). [DOI: https://doi.org/10.1063/1.2432297]
  8. D. Pysch, C. Meinhard, N. P. Harder, M. Hermle, and S. W. Glunz, J. Appl. Phys., 110, 094516 (2011). [DOI: https://doi.org/10.1063/1.3650255]
  9. H. W. Du, J. Yang, Y. Li, M. Gao, S. M. Chen, Z. S. Yu, F. Xu, and Z. Q. Ma, J. Phys. D: Appl. Phys., 48, 355101 (2015). [DOI: https://doi.org/10.1088/0022-3727/48/35/355101]
  10. K. Ohdaira, T. Oikawa, K. Higashimine, and H. Matsumura, Curr. Appl. Phys., 16, 1026 (2016). [DOI: https://doi.org/10.1016/j.cap.2016.06.001]
  11. K. Ding, U. Aeberhard, F. Ginger, and U. Rau, J. Appl. Phys., 113, 134501 (2013). [DOI: https://doi.org/10.1063/1.4798603]
  12. D.A.P. Bulla and N. I. Morimoto, Thin Solid Films, 334, 60 (1998). [DOI: https://doi.org/10.1016/S0040-6090(98)01117-1]
  13. D. Hiller, R. Zierold, J. Bachmann, M. Alexe, Y. Yang, J. W. Gerlach, A. Stesmans, M. Jivanescu, U. Muller, J. Vogt, H. Hilmer, P. Loper, M. Kunle, F. Munnik, K. Nielsch, and M. Zacharias, J. Appl. Phys., 107, 064314 (2010). [DOI: https://doi.org/10.1063/1.3327430]
  14. Y. Du, X. Du, and S. M. George, Thin Solid Films, 491, 43 (2005). [DOI: https://doi.org/10.1016/j.tsf.2005.05.051]
  15. S. J. Won, J. R. Kim, S. Suh, N. I. Lee, C. S. Hwang, and H. J. Kim, ACS Appl. Mater. Interfaces, 3, 1633 (2011). [DOI: https://doi.org/10.1021/am200176j]
  16. D. Choi, B. K. Kim, K. B. Chung, and J. S. Park, Mater. Res. Bull., 47, 3004 (2012). [DOI: https://doi.org/10.1016/j. materresbull.2012.04.093]
  17. K. Pfeiffer, S. Shestaeva, A. Bingel, P. Munzert, U. Schulz, N. Kaiser, A. Tunnermann, and A. Szeghalmi, Optical Systems Design 2015: Advances in Optical Thin Films V, 9627, 96270Q (2015). [DOI: https://doi.org/10.1117/12.2191283]
  18. A. Mallikarjunan, H. Chandra, M. Xiao, X. Lei, R. M. Pearlstein, H. R. Bowen, M. L. O'Neill, A. Derecskei-Kovacs, and B. Han, J. Vac. Sci. Technol., A, 33, 01A137 (2015). [DOI: https://doi.org/10.1116/1.4903275]
  19. G. Dingemans, C.A.A. van Helvoirt, D. Pierreux, W. Keuning, and W.M.M. Kessels, J. Electrochem. Soc., 159, H277 (2012). [DOI: https://doi.org/10.1149/2.067203jes]
  20. S. E. Potts, H. B. Profijt, R. Roelofs, and W.M.M. Kessels, Chem. Vap. Deposition, 19, 125 (2013). [DOI: https://doi.org/10.1002/cvde.201207033]
  21. L. Martini, L. Serenelli, F. Menchini, M. lzzi, and M. Tucci, Prog. Photovoltaics: Process. Res. Appl., 28, 307 (2020). [DOI: https://doi.org/10.1002/pip.3241]
  22. M. Liebhaber, M. Mews, T. F. Schulze, L. Korte, B. Rech, and K. Lips, Appl. Phys. Lett., 106, 031601 (2015). [DOI: https://doi.org/10.1063/1.4906195]
  23. A. O. Zamchiy, E. A. Baranov, I. E. Merkulova, S. Y. Khmel, E. A. Mazimovskiy, J. Non-Cryst. Solids, 518, 43 (2019). [DOI: https://doi.org/10.1016/j.jnoncrysol.2019.05.015]
  24. R. S. Bonilla, B. Hoex, P. Hamer, and P. R. Wilshaw, Phys. Status Solidi A, 214, 1700293 (2017). [DOI: https://doi.org/10.1002/pssa.201700293]
  25. T. G. Allen, J. Bullock, X. Yang, A. Javey, and S. De Wolf, Nat. Energy, 4, 914 (2019). [DOI: https://doi.org/10.1038/s41560-019-0463-6]
  26. E. Hall, Master Thesis, Synthesis and Characterisation of PEDOT:PSS/Silicon Interfaces for Use in Low Cost, High Efficiency Solar Cells, p. 1-103, Uio: Department of Chemistry Universirty of Oslo, Oslo (2020). [https://www.duo.uio.no/handle/10852/79671]
  27. Martin Lutz Liebhaber, Silicon Heterojunction Solar Cells: From Conventional Concepts to a Singlet Fission Multi-exciton Generating Hybrid Approach, refubium.fu-berlin.de/handle/fub188/4394 (2017).
  28. S. Wang, V. Smirnov, T. Chen, B. Hollander, X. Zhang, S. Xiong, Y. Zhao, and F. Finger, Jpn. J. Appl. Phys., 54, 011401 (2015). [DOI: https://doi.org/10.7567/JJAP.54.011401]
  29. J. F. Chen, S. S. Zhao, L. L. Yan, H. Z. Ren, C. Han, D. K. Zhang, C. C. Wei, G. C. Wang, G. F. Hou, Y. Zhao, and X. D. Zhang, Chin. Phys. B, 29, 038801 (2020). [DOI: https://doi.org/10.1088/1674-1056/ab6c47]