• Title/Summary/Keyword: Tunnel analysis

Search Result 3,153, Processing Time 0.028 seconds

Fracture Toughness Evaluation and Influence Parameter Analysis by Numerical Simulation of Brazilian Test (Brazilian 시험의 수치해석 시뮬레이션을 통한 파괴인성 산정 및 영향변수 분석)

  • Synn, Joong-Ho;Park, Chan;Shin, Hee-Soon;Chung, Yong-Bok;Lee, Hi-Keun
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.320-328
    • /
    • 2000
  • The numerical simulation of Brazilian fracture toughness test is carried out using PFC code and the influence parameters are analyzed such as shape of loading plane, size of Brazilian disc and unit particle of model, loading angle and loading rate. The flattened Brazilian disc is adopted for applying uniform load. The range of loading angle(2$\alpha$) necessary to induce the tensile crack at disc center and to obtain the load-displacement curve giving the critical load for the stable crack propagation is shown as 20°∼40°. In condition that the loading angle is 20°, the mode-I fracture toughness is evaluated almost constant in the range of particle size less than 1 mm and loading rate less than 0.01㎜/s. This range of influence parameters seems appropriate condition for the tensile crack initiation at disc center and the control of stable crack propagation, which can give the reliance in evaluation of fracture toughness by Brazilian test.

  • PDF

A Study on Reliability of Joint Orientation Measurements in Rock Slope using 3D Laser Scanner (3D Laser Scanner를 이용한 암반사면의 절리방향 측정의 신뢰성에 관한 연구)

  • Park, Sun-Hyun;Lee, Su-Gon;Lee, Boyk-Kyu;Kim, Chee-Hwan
    • Tunnel and Underground Space
    • /
    • v.25 no.1
    • /
    • pp.97-106
    • /
    • 2015
  • We must precisely investigate the mechanical characters of rock to design rock slope safely and efficiently. But the method of clinometer has some disadvantages. So, we need a new measurement that can replace the method of clinometer. In this study, we analyze the reliability of joint orientation measurements in rock slope using the 3D laser scanner and program Split-FX that is a point cloud data analysis software. We could acquire the 495 pieces joint data through the automatic extraction of features. And we confirmed that there were some errors occurred with ${\pm}4^{\circ}$ of dip and ${\pm}5^{\circ}$ of dip direction. Generally, the method of clinometer has ${\pm}5^{\circ}$ and ${\pm}10^{\circ}$ error ranges of the joint orientation(dip/dip direction) that are the results of the advance research. Therefore, we analyzed the method of 3D laser scanner, and it is found to be efficient, reliable. This method is expected to mend the disadvantages of Clinometer method.

Experimental Study on the Elastic Constants of A Transversely Isotropic Rock by Multi-Specimen Compression Tests Report 2 - Statistical Evaluation and Determination of True Values of Elastic Constants (다중시험편 시험에 의한 평면이방성 암석의 탄성상수 분석연구 제 2 보 - 자료의 통계적 평가와 참값의 결정)

  • Park, Chulwhan;Park, Chan;Jung, Yong-Bok
    • Tunnel and Underground Space
    • /
    • v.22 no.5
    • /
    • pp.346-353
    • /
    • 2012
  • Multi-specimen uniaxial compression test has been carried out in order to find the method to determine the five independent elastic constants from a single standard specimen of a transversely isotropic rock. Total 35 specimens of 7 different angles from a large block of rhyolite presenting the flow structure obviously are used in tests. This second report is to focus on the statistical evaluation of measured strains and analyzed elastic constants. And the determination of their true or near-true values is discussed. As the result of RSD analysis, it turns out that the reliability of measured strains is sufficiently obtained and Saint-Venant approximation is well applicable except 15 degree angled specimen in tests. RSD is decreasing on the increase of the angle of anisotropy. This tendency may be caused not only by the decreasing of the deviation of measured strains, but also by the better applicability of Saint-Venant approximation on the increase of angle. It can be concluded that the analyzed values are considered the near-true ones of five independent constants on the high reliability. But the variation of the apparent Young's modulus expected by these values is not proved to match the measured tendency. It is inferred that the factor to decrease the apparent Young's modulus and/or to increase the shear strain, is present in the test or in the nature of the anisotropy in consideration of this inconsistency.

A Study on Thermodynamic Natural Ventilation Analysis by the Field Survey of Underground Mines in Korea (현장실측을 통한 국내 일반광의 열역학적 자연통기력 연구)

  • Yu, Yeong-Seok;Roh, Jang-Hoon;Kim, Jin
    • Tunnel and Underground Space
    • /
    • v.23 no.4
    • /
    • pp.288-296
    • /
    • 2013
  • In this study, a total of 13 mines were finally selected as study subjects and field measurements were conducted. Thereafter, calculations of thermodynamic natural ventilation were attempted using spread sheets and solutions for natural ventilation of mine types with multiple vertical shafts were obtained. Based on the results, natural ventilation of each mine was quantified. In addition, changes in natural ventilation energy (NVE) and natural ventilation pressure (NVP) were estimated assuming mine deepening and the resultant values were applied to mine conditions to observe changes in flow rates. Natural ventilation pressure in domestic mines is generally calculated to be in a range of 5 Pa~300 Pa. Although NVP increases as the depth increases, resistance also increases. Therefore, as the depth increases, flow rates show a tendency of converging on a certain value because of the relationship between NVP and mine resistance. Natural ventilation using shafts with depth differences is effective up to depths of 200~300 m. However, flow rate change rates resulting from NVP are small at depths deeper than approximately 200~300 m. Therefore, if a mine is deepened over 300 m, NVP will become insufficient and thus additional pressure obtained through mechanical ventilation will be necessary.

An Investigation on the Characteristics of Local Factors of Safety of Rock Failure and Their Dependency on the Stress Paths (암석파괴 국부안전율의 특성과 응력경로 의존성 고찰)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.27 no.1
    • /
    • pp.39-49
    • /
    • 2017
  • The factor of safety (FOS) is commonly used as an index to quantitatively state the degree of safety of various rock structures. Therefore it is important to understand the definition and characteristics of the adopted FOS because the calculated FOS may be different according to the definition of FOS even if it is estimated under the same stress condition. In this study, four local factors of safety based on maximum shear stress, maximum shear strength, stress invariants, and maximum principal stress were defined using the Mohr-Coulomb and Hoek-Brown failure criteria. Then, the variation characteristics of each FOS along five stress paths were investigated. It is shown that the local FOS based on the shear strength, which is widely used in the stability analysis of rock structures, results in a higher FOS value than those based on the maximum principal stress and the stress invariants. This result implies that the local FOS based on the maximum shear stress or the stress invariants is more necessary than the local FOS based on the shear strength when the conservative rock mechanics design is required. In addition, it is shown that the maximum principal stresses at failure may reveal a large difference depending on the stress path.

A Study on the Optimal Installation of Ducted Fan Ventilation System in Long Mine Airways - Focused on the Wall Separation Distance and the Gap Length between Ducts (장대 광산갱도내 풍관 접속 통기선풍기 최적 설치 방안연구 - 벽면과 풍관간의 이격거리 중심으로)

  • Lee, Chang Woo;Nguyen, Van Duc
    • Tunnel and Underground Space
    • /
    • v.27 no.1
    • /
    • pp.12-25
    • /
    • 2017
  • In local underground mines heavily depending on the natural ventilation, ducted fan auxiliary ventilation system is strongly recommended instead of the total mine ventilation system requiring large capital and operating costs. Optimizing the installation of ducted fans in series in long large-opening mines is required to assure the economy and efficiency of the ventilation system. The two most critical design parameters for optimization are the wall separation distance and gap length between adjoining ducts. This study aims at deriving the optimal values for those two parameters concerning the economic and environmental aspects through the extensive CFD analysis, which minimizes pressure loss, leakage and entrainment of the contaminated air in the gap space. The ranges of the wall separation distance and gap length for study are selected by taking into consideration the existing recommendations and guidelines. The ultimate goal is to optimize the auxiliary ventilation system using ducted fans in series to provide a reliable and efficient solution to maintain clean and safe workplace environment in local long underground mines.

A Case Study on Elephant Foot Method for Railway Tunneling in Large Fault Zone (대규모 단층대구간에서의 철도터널 우각부 보강공법 적용성 연구)

  • Lee, Gilyong;Oh, Jeongho;Cho, Kyehwan;Lee, Doosoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.1161-1167
    • /
    • 2016
  • In this study, an attempt was made to conduct a case study on the development of ground expansive displacement due to lack of bearing capacity of original ground in spite of applying reinforcement treatments that intended to enhance the stability of big size high-speed rail tunnel in large fault zone. For the purpose of this, in-situ measurements made in the middle of excavation stage were analyzed in order to characterize ground responses and numerical analysis was performed to evaluate the effectiveness of reinforcement technique such as elephant foot method applied for this site via comparing with field monitoring measurements. In addition, further numerical studies were carried out to investigate the influence of leg pile installation angle and length, which is one of types of elephant foot method. The results revealed that the optimum condition for the leg pile installation is to maintain 45 degree of installation angle along with 6 meter of embedment depth.

A study on the effect of the locations of pile tips on the behaviour of piles to adjacent tunnelling (말뚝선단의 위치가 터널근접 시공에 의한 말뚝의 거동에 미치는 영향에 대한 연구)

  • Lee, Cheol-Ju;Jeon, Young Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.2
    • /
    • pp.91-105
    • /
    • 2015
  • In the current work, a series of three-dimensional (3D) finite element analyses have been performed to study the effects of the locations of pile tips on the behaviour of single piles to adjacent tunnelling. In the numerical modelling, several key issues, such as tunnelling-induced pile head settlements, axial pile forces, interface shear stresses and apparent factors of safety have been studied. When the pile tips are inside the influence zone which considers the relative pile tip location with respect to the tunnel position, tunnelling-induced pile head settlements are larger than those computed from the greenfield condition. However, when the pile tips were outside the influence zone, an opposite trend was observed. When the pile tips were inside the influence zone, tunnelling-induced tensile pile forces developed; however, when the pile tips were outside the influence zone, tunnelling-induced compressive pile forces were mobilised, associated with larger settlements of the surrounding soil than the pile settlements. It has been shown that the increases in the tunnelling-induced pile head settlements have resulted in reductions of the apparent factor of safety by about 50% when the pile tips are inside the influence zone, therefore severly affecting the serviceability of piles. The pile behaviour, when considering the location of pile tips with regards to the influence zone, has been analysed in great detail by taking the tunnelling-induced pile head settlements, axial pile force and apparent factor of safety into account.

Development of penetration rate model and optimum operational conditions of shield TBM for electricity transmission tunnels (터널식 전력구를 위한 순굴진율 모델 개발 및 이를 활용한 쉴드TBM 최적운전 조건 제안)

  • Kim, Jeong-Ju;Ryu, Hui-Hwan;Kim, Gyeong-Yeol;Hong, Seong-Yeon;Jeong, Ju-Hwan;Bae, Du-San
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.6
    • /
    • pp.623-641
    • /
    • 2020
  • About 5 km length of tunnels were constructed by mechanized tunnelling method using closed type shield TBM. In order to avoid construction delay problems for ensuring timely electricity transmission, it is necessary to increase the prediction accuracy of the excavation process involving machines according to rock mass types. This is important to corroborate the project duration and optimum operation for various considerations involved in the machine. So, full-scale tunnelling tests were performed for developing the advance rate model to be appropriately used for 3.6 m diameter shield TBM. About 100 test cases were established and performed using various operational parameters such as thrust force and rotational speed of cuttterhead in representative uniaxial compressive strengths. Accordingly, relationships between normal force and penetration depth and, between UCS and torque were suggested which consider UCS and thrust force conditions according to weathered, soft, hard rocks. Capacity analysis of cutterhead was performed and optimum operational conditions were also suggested based on the developed model. Based on this study, it can be expected that the project construction duration can be reduced and users can benefit from the provision of earlier service.

A Study on the Formation and Change in the Mordern Sajik Park (근대 사직공원의 형성과 변천)

  • Kim, Seo-Lin;Kim, Hai-Gyoung;Park, Mi-Hyun
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.32 no.4
    • /
    • pp.120-131
    • /
    • 2014
  • Sajikdan(a sort of national shrine in Korea) built at the time of foundation of Joseon was entrenched into Sajik Park going through Japanese colonial era and recently the efforts to restore it is in progress. The details of change in Sajikdan in terms of diachronic analysis are as follows: Firstly, the first period refers to one prior to Japanese colonial era from the first king (also named as "Taejo" in Korean) of the Joseon Dynasty, during which it secured and strengthened the presence as a place for performing important national rites in a nation. It was built on the foot of Inwangsan Mt. at the time of the first king in Joseon Dynasty at first, was destroyed fully by fire during a Japanese Invasion period to Korea(1592-98) and afterward its ancestral ritual facilities were completed under the regime of Youngjo. However, as Japanese intervention coming to the fore, its place was destroyed and then ancestral rites were also abolished in 1908. Secondly, next period falls on 1910 to 1944 when it was transformed and entrenched into a park by the Japanese Empire. While facilities related to a park and an heterogeneous building around the part of boundary were set up, the area of altar, a ritual house and d door of Sajikdan were also designated as historical remains and treasures. Thirdly, this period refers to one from Korea's liberation year from Japanese colony(1945) to the year of 1984 when it had a mixed placeness with the statues, monuments and buildings with heterogeneous nature built. Furthermore, a door of Sajikdan was removed and reconstructed over twice due to opening of Sajik Tunnel. Fourthly, a final period falls on 1985 to the present when efforts are in progress to restore the historicity and symbolism of Sajikdan. A plan for restoration is promoted but now is a difficult time suffering from troubles caused by residents' resistance. Scrutinized historical researches through excavation investigation and residents' understanding are required altogether for restoration of Sajikdan.