DOI QR코드

DOI QR Code

A Study on Reliability of Joint Orientation Measurements in Rock Slope using 3D Laser Scanner

3D Laser Scanner를 이용한 암반사면의 절리방향 측정의 신뢰성에 관한 연구

  • 박선현 (서울시립대학교 대학원 토목공학과) ;
  • 이수곤 (서울시립대학교 공과대학 토목공학과) ;
  • 이벽규 ((주)지오메카이엔지) ;
  • 김치환 (우석대학교 토목공학과)
  • Received : 2015.02.11
  • Accepted : 2015.02.24
  • Published : 2015.02.28

Abstract

We must precisely investigate the mechanical characters of rock to design rock slope safely and efficiently. But the method of clinometer has some disadvantages. So, we need a new measurement that can replace the method of clinometer. In this study, we analyze the reliability of joint orientation measurements in rock slope using the 3D laser scanner and program Split-FX that is a point cloud data analysis software. We could acquire the 495 pieces joint data through the automatic extraction of features. And we confirmed that there were some errors occurred with ${\pm}4^{\circ}$ of dip and ${\pm}5^{\circ}$ of dip direction. Generally, the method of clinometer has ${\pm}5^{\circ}$ and ${\pm}10^{\circ}$ error ranges of the joint orientation(dip/dip direction) that are the results of the advance research. Therefore, we analyzed the method of 3D laser scanner, and it is found to be efficient, reliable. This method is expected to mend the disadvantages of Clinometer method.

암반사면을 안전하고 효율적으로 설계하기 위해서는 암반의 역학적 특성을 정밀하게 조사하여야 한다. 하지만 현재 사용되고 있는 클리노미터를 이용한 절리 조사의 한계점으로 인해 이를 보완할 수 있는 새로운 측정법의 연구가 필요로 하고 있다. 그러므로 본 연구에서는 3D Laser Scanner와 점군 데이터 분석 소프트웨어 Split-FX를 이용하여 암반사면의 절리방향 측정의 신뢰성을 분석하였다. 절리면 자동추출 기능을 통하여 총 495개의 절리 데이터를 얻었으며, 동일 지역을 클리노미터를 이용하여 측정한 38개의 데이터와 비교하여 분석한 결과 경사는 ${\pm}4^{\circ}$, 경사방향은 ${\pm}5^{\circ}$의 편차를 가지는 것을 확인하였다. 이러한 측정결과는 선행 연구를 통해 알게 된 클리노미터의 조사자에 따른 경사/경사방향 오차범위 ${\pm}5^{\circ}/{\pm}10^{\circ}$에 속하기 때문에 3D Laser Scanner를 이용한 절리데이터 취득 및 분석은 기존의 조사법을 보완할 수 있는 효율적이고 신뢰성 있는 조사법이라고 분석되었다.

Keywords

References

  1. Boehler, W. and Marbs, A., 2002, 3D Scanning Instruments, In Proceedings of the CIPA WG6, International Workshop on Scanning for Cultural Heritage Recording, Ziti, Thessaloniki, 9-18.
  2. Blythe, D., McReynolds, T., Grantham, B and Nelson, S., 1999, Advanced Graphics Programming Tchniques Using OpenGL Siggraph.
  3. Ewan, V. J. and West, G., 1981, Reproducibility of joint orientation measurements in rock, Transport and Road Research Laboratory supplementary report 702, 18P, International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 19.4, 94.
  4. Hagan, T. O., 1980, A case of terrestrial photogrammetry in deep-mine rock structure studies, International Journal of Rock Mechanics and Mining Science & Geomechanics, 17, 191-198. https://doi.org/10.1016/0148-9062(80)91085-2
  5. Kim, C. H, and Kemeny, J., 2008, Automatic Extraction of Fractures and Their Characteristics in Rock Masses by LIDAR System and the Split-FX Software, Journal of Korean Society for Rock Mechanics, 19.1, 1-10.
  6. Park, E. H., 2010, Research about the analysis of the characteristics and the stability on rock slope using terrestrial LiDAR, MSc thesis, Pai Chai University.
  7. Park, S. H., 2015, A study on reliability of joint orientation measurements in rock slopes using 3D laser scanner, MSc thesis, Department of Civil Engineering, University of Seoul.
  8. Park, H. D. and Jeong, C. Y., 2003, DEM generation of Rock Slope using Laser Scanning and Digital Stereo Photogrammetry, Journal of Korean Society for Rock Mechanics, Korean Society for Rock Mechanics, 13.3, 207-214.
  9. Priest, S. D., 1993, Discontinuity analysis for rock engineering, Chapman & Hall, London.
  10. Reid, T. R. and Harrison, J. P., 2000, A semi-automated methodology for discontinuity trace detection in digital images of rock mass exposures, International Journal of Rock Mechanics & Mining Sciences, 37.7, 1073-1089. https://doi.org/10.1016/S1365-1609(00)00041-1
  11. Ryu, D. W., Lee, Y., Chang, Y. S., Lee, H. K. and Park, H. D., 2000, Rock Joint Survey System by image Processing and Stereophotogrammetry, TUNNEL & UNDERGROUND SPACE, Journal of Korean Society for Rock Mechanics, 10.3, 329-343.
  12. Shin, S. M., 2005, A study on the analysis of discontinuity in the rock-mass by 3D laser scanner, MSc thesis, Pai Chai University.
  13. Slob, S. and Hack, R., 2004, 3D Terrestrial Laser Scanning as a New Field Measurement and Monitoring Technique, Engineering Geology for Infrastructure Planning in Europe, 104, 179-189. https://doi.org/10.1007/978-3-540-39918-6_22
  14. Slob, S., Hack, R. and Turner, A. K., 2002, An approach to automate discontinuity measurements of rock races using laser scanning techniques, ISRM International Symposium on Rock Engineering For Mountainous Regions, 87-94.
  15. Yue, B. M., Park, U. Y. and Yang, I. T., 1983, Theoretical Research on Photogrammetric Dip and Strike Determination of Inclined Surfaces, Journal of Korea Society of Civil Engineers, 3.3, 129-135.
  16. Split Engineering, 2010, Split-FX (Point Cloud Processing Software : Version 2.0), Split Engineering LLC., Tucson, Arizona, USA.
  17. Leica Geosystems, 2009, Leica ScanStation 2, Product inormation and specifications, Leica Geosytems AG., Heerbrugg, Switzerland.

Cited by

  1. A Study on the Extraction of Slope Surface Orientation using LIDAR with respect to Triangulation Method and Sampling on the Point Cloud vol.26, pp.1, 2016, https://doi.org/10.7474/TUS.2016.26.1.046