DOI QR코드

DOI QR Code

암석파괴 국부안전율의 특성과 응력경로 의존성 고찰

An Investigation on the Characteristics of Local Factors of Safety of Rock Failure and Their Dependency on the Stress Paths

  • Lee, Youn-Kyou (Department of Coastal Construction Engineering, Kunsan National University)
  • 투고 : 2017.02.07
  • 심사 : 2017.02.24
  • 발행 : 2017.02.28

초록

다양한 암반구조물의 안전도를 정량적으로 표현하는 지수로 안전율이 흔히 사용된다. 그러므로 동일한 응력조건에서 산정된 안전율이라 할지라도 안전율의 정의에 따라 안전율 계산 값의 차이가 있을 수 있으므로 적용하는 안전율의 정의와 특성을 이해하는 것이 중요하다. 이 연구에서는 Mohr-Coulomb 파괴조건식과 Hoek-Brown 파괴조건식을 활용하여 최대전단응력, 최대전단강도, 응력불변량, 최대주응력을 기반으로 하는 4종의 국부안전율을 정의하였다. 이어서 5가지 응력경로에 따른 각 안전율의 변화특성을 고찰하였다. 암반구조물 해석시 전통적으로 많이 이용되고 있는 전단강도 기반의 국부안전율은 최대주응력 및 응력불변량 기반의 안전율에 비해 높은 안전율 값을 계산함을 보였다. 이러한 결과는 보수적 암반공학적 설계가 필요한 경우 전단강도 기반의 국부안전율보다 최대전단응력이나 응력불변량 기반의 국부안전율 도입이 필요하다는 것을 말해준다. 또한 응력경로에 따라 파괴 시 최대주응력 값도 큰 차이가 있을 수 있음을 보였다.

The factor of safety (FOS) is commonly used as an index to quantitatively state the degree of safety of various rock structures. Therefore it is important to understand the definition and characteristics of the adopted FOS because the calculated FOS may be different according to the definition of FOS even if it is estimated under the same stress condition. In this study, four local factors of safety based on maximum shear stress, maximum shear strength, stress invariants, and maximum principal stress were defined using the Mohr-Coulomb and Hoek-Brown failure criteria. Then, the variation characteristics of each FOS along five stress paths were investigated. It is shown that the local FOS based on the shear strength, which is widely used in the stability analysis of rock structures, results in a higher FOS value than those based on the maximum principal stress and the stress invariants. This result implies that the local FOS based on the maximum shear stress or the stress invariants is more necessary than the local FOS based on the shear strength when the conservative rock mechanics design is required. In addition, it is shown that the maximum principal stresses at failure may reveal a large difference depending on the stress path.

키워드

참고문헌

  1. Castelletto, N., Gambolati, G. and Teatini, P., 2013, Geological CO2 sequestration in multi-compartment reservoirs: Geomechanical challenges, J. Geophy. Res.: Solid Earth, 118, 2417-2428. https://doi.org/10.1002/jgrb.50180
  2. Chen, W.F. and Saleeb, A.F., 1982, Constitutive equations for engineering materials Vol.1: Elasticity and Modeling, John Wiley & Sons.
  3. Clausen, J. and Damkilde, L., 2006, Slope safety factor calculations with non-linear yield criterion using finite elements, In: Num. Meth. Geotech. Eng. - Schweiger (Ed.), 491-496, Taylor & Francis Group, London.
  4. Dawson, E.M., Roth, W.H. and Drescher, A., 1999, Slope stability analysis by strength reduction, Geotechnique, 49, 835-840. https://doi.org/10.1680/geot.1999.49.6.835
  5. Duncan Fama, M.E., Trueman, R. and Craig, M.S., 1995, Two- and Three-dimensional elasto-plastic analysis for coal pillar design and its application to highwall mining, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 32(3), 215-225. https://doi.org/10.1016/0148-9062(94)00045-5
  6. Duncan, J.M., 1996, State of the art: Limit equilibrium and finite-element analysis of slopes, J. Geotech. Eng. ASCE, 122.7, 577-596. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:7(577)
  7. Esterhuizen, G.S., Dolinar, D.R. and Ellenberger, J.L., 2011, Pillar strength in underground stone mines in the United States, Int. J. Rock Mech. Min. Sci., 48, 42-50. https://doi.org/10.1016/j.ijrmms.2010.06.003
  8. Hammah, R.E, Curran J.H., Yacoub, T. and Corkum, B., 2004, Stability analysis of rock slopes using the finite element method, In: Proc. ISRM Regional Sympo. EUROCK 2004 & 53rd Geomech. Colloq., Salzburg, Autria.
  9. Hoek., E. and Brown E.T., 1980, Underground excavations in rock, The Institution of Mining and Metallurgy, London.
  10. Hoek, E., 1983, Strength of jointed rock masses, Geotechnique, 33(3), 187-223. https://doi.org/10.1680/geot.1983.33.3.187
  11. Huang, S.L. and Yamasaki, K., 1993, Slope failure analysis using local minimum factor-of-safety approach, J. Geotech. Eng., 119(12), 1974-1987. https://doi.org/10.1061/(ASCE)0733-9410(1993)119:12(1974)
  12. Lee, Y.K., 2011, Study on a 3-dimensional rock failure criterion approximating to Mohr-Coulomb surface, Tunnel & Underground Space, 21(2), 93-102.
  13. Lee, Y.K., Song, W.K., Park, C. and Choi, B.H., 2011, Stability analysis of concrete plugs using 3-D failure criterion, Tunnel & Underground Space, 21(6), 526-535.
  14. Lee, Y.K., 2014, Derivation of Mohr envelope of Hoek-Brown failure criterion using non-dimensional stress transformation, Tunnel & Underground Space, 24(1), 81-88. https://doi.org/10.7474/TUS.2014.24.1.081
  15. Lee, Y.K. and Pietruszczak, S., 2016, Analytical Representation of Mohr Failure Envelope Approximating the Generalized Hoek-Brown Failure Criterion, Int. J. Rock Mech. Min. Sci. (submitted).
  16. Londe, P., 1988, Discussion on the determination of the shear stress failure in rock masses, ASCE J. Geotech. Eng. Div., 14(3), 374-376.
  17. Nayak, G. C. and Zienkiewicz, O. C., 1972, Convenient forms of stress invariants for plasticity. J. Struct. Div. ASCE, 98, 949-953.
  18. Pietruszczak, S., 2010, Fundamentals of plasticity in geomechanics, CRC Press.
  19. Okubo, S., Fukui, K. and Nishimatsu, Y., 1997, Local safety factor applicable to wild range of failure criteria, Rock Mech. Rock Eng., 30(4), 223-227. https://doi.org/10.1007/BF01045718
  20. Roostaei, R., 2014, Quantifying the error associated with the use of triaxial rock strength criterion in rock stability assessment around underground openings, Master's Thesis, University of Toronto.
  21. Ucar, R., 1986, Determination of shear failure envelope in rock masses, J. Geotech. Eng. Div. ASCE, 112(3), 303-315. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:3(303)
  22. Wyllie, D.C. and Mah, C.W., 2004, Rock Slope Engineering (4th Ed.), Spon Press, New York.
  23. Zheng, H., Tham, L.G. and Liu, D., 2006, On two definitions of the factor of safety commonly used in the finite element slope stability, Computers and Geotechnics, 33, 188-195. https://doi.org/10.1016/j.compgeo.2006.03.007