• 제목/요약/키워드: Tungsten Oxide

검색결과 204건 처리시간 0.027초

스마트윈도우 응용을 위한 FTO 기판 위에 증착된 VO2 박막의 광학적 특성 (Optical Properties of VO2 Thin Film Deposited on F:SnO2 Substrate for Smart Window Application)

  • 강소희;한승호;박승준;김형근;양우석
    • 한국재료학회지
    • /
    • 제23권4호
    • /
    • pp.215-218
    • /
    • 2013
  • Vanadium dioxide ($VO_2$) is an attractive material for smart window applications where the transmittance of light can be automatically modulated from a transparent state to an opaque state at the critical temperature of ${\sim}68^{\circ}C$. Meanwhile, F : $SnO_2$ (F-doped $SnO_2$, FTO) glass is a transparent conductive oxide material that is widely used in solar-energy-related applications because of its excellent optical and electrical properties. Relatively high transmittance and low emissivity have been obtained for FTO-coated glasses. Tunable transmittance corresponding to ambient temperature and low emissivity can be expected from $VO_2$ films deposited onto FTO glasses. In this study, FTO glasses were applied for the deposition of $VO_2$ thin films by pulsed DC magnetron sputtering. $VO_2$ thin films were also deposited on a Pyrex substrate for comparison. To decrease the phase transition temperature of $VO_2$, tungsten-doped $VO_2$ films were also deposited onto FTO glasses. The visible transmittance of $VO_2$/FTO was higher than that of $VO_2$/pyrex due to the increased crystallinity of the $VO_2$ thin film deposited on FTO and decreased interface reflection. Although the solar transmittance modulation of $VO_2$/FTO was lower than that of $VO_2$/pyrex, room temperature solar transmittance of $VO_2$/FTO was lower than that of $VO_2$/pyrex, which is advantageous for reflecting solar heat energy in summer.

볼밀을 이용한 TiO2/WO3 복합체 제조 및 광촉매 특성 (Photocatalysis of TiO2/WO3 Composites Synthesized by Ball Milling)

  • 유수열;남충희
    • 한국분말재료학회지
    • /
    • 제25권4호
    • /
    • pp.316-321
    • /
    • 2018
  • Composites of P25 $TiO_2$ and hexagonal $WO_3$ nanorods are synthesized through ball-milling in order to study photocatalytic properties. Various composites of $TiO_2/WO_3$ are prepared by controlling the weight percentages (wt%) of $WO_3$, in the range of 1-30 wt%, and milling time to investigate the effects of the composition ratio on the photocatalytic properties. Scanning electron microscopy, x-ray diffraction, and transmission electron microscopy are performed to characterize the structure, shape and size of the synthesized composites of $TiO_2/WO_3$. Methylene blue is used as a test dye to analyze the photocatalytic properties of the synthesized composite material. The photocatalytic activity shows that the decomposition efficiency of the dye due to the photocatalytic effect is the highest in the $TiO_2/WO_3$ (3 wt%) composite, and the catalytic efficiency decreases sharply when the amount of $WO_3$ is further increased. As the amount of $WO_3$ added increases, dye-removal by adsorption occurs during centrifugation, instead of the decomposition of dyes by photocatalysts. Finally, $TiO_2/WO_3$ (3 wt%) composites are synthesized with various milling times. Experimental results show that the milling time has the best catalytic efficiency at 30 min, after which it gradually decreases. There is no significant change after 1 hour.

Tungsten oxide interlayer for hole injection in inverted organic light-emitting devices

  • 김윤학;박순미;권순남;김정원
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.380-380
    • /
    • 2010
  • Currently, organic light-emitting diodes (OLEDs) have been proven of their readiness for commercialization in terms of lifetime and efficiency. In accordance with emerging new technologies, enhancement of light efficiency and extension of application fields are required. Particularly inverted structures, in which electron injection occurs at bottom and hole injection on top, show crucial advantages due to their easy integration with Si-based driving circuits for active matrix OLED as well as large open area for brighter illumination. In order to get better performance and process reliability, usually a proper buffer layer for carrier injection is needed. In inverted top emission OLED, the buffer layer should protect underlying organic materials against destructive particles during the electrode deposition, in addition to increasing their efficiency by reducing carrier injection barrier. For hole injection layers, there are several requirements for the buffer layer, such as high transparency, high work function, and reasonable electrical conductivity. As a buffer material, a few kinds of transition metal oxides for inverted OLED applications have been successfully utilized aiming at efficient hole injection properties. Among them, we chose 2 nm of $WO_3$ between NPB [N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine] and Au (or Al) films. The interfacial energy-level alignment and chemical reaction as a function of film coverage have been measured by using in-situ ultraviolet and X-ray photoelectron spectroscopy. It turned out that the $WO_3$ interlayer substantially reduces the hole injection barrier irrespective of the kind of electrode metals. It also avoids direct chemical interaction between NPB and metal atoms. This observation clearly validates the use of $WO_3$ interlayer as hole injection for inverted OLED applications.

  • PDF

Synthesis, Characterization, and Catalytic Properties of Gp 6 Metal Complexes of 1-N,N-dimethylaminomethyl-$1^{\prime}$,2-bis(diphenylphosphino)ferrocene (FcNPP). X-ray Crystal Structure of W$(CO)_4({\eta}^2-FcNPP(O)-P,N)$

  • Kim, Tae-Jeong;Kim, Yong-Hoon;Kim, Eun-Jin;Oh, Sang-Ho;Kim, Hong-Seok;Jeong, Jong-Hwa
    • Bulletin of the Korean Chemical Society
    • /
    • 제15권5호
    • /
    • pp.379-386
    • /
    • 1994
  • Reactions of 1',2-bis(diphenylphosphino)-l-(N,N-dimethylaminomethyl)ferrocene (FcNPP) with $M(CO)_6$ (M=Cr, Mo, W) in the presence of TMNO (Trimethylamine oxide) in a stoichiometric ratio of 1 : 1.5 : 3.5 produced a series of Gp 6 metal carbonyl derivatives with a variety of coordination modes: M(CO)$_4({\eta}^2$-FcNPP-P,P) (M=Cr, Mo, W), $M(CO)_5({\eta}^1-FcNPP-P) (M=Mo, W)\;,\; M_2(CO)_9({\eta}^1\;,\;{\eta}^2-FcNPP-P,P,N) (M=Cr, Mo)\;,\;M_2(CO)_{10}({\eta}^1\;,\;{\eta}^1-FcNPP-P,P) (M=Cr, Mo, W)\;, and\;W(CO)_4({\eta}^2-FcNPP(O)-P,N)$. All these complexes were characterized by microanalytical and spectroscopic techniques. In one case, the structure of W(CO)$_4({\eta}^2$-FcNPP(O)-P,N) was determined by X-ray crystallography. Crystals are monocinic, space group P$2_{1/C}$, with a=10.147(2), b=19.902(3), c=19.821(4) ${\AA},\;{\beta}=96.88(2)^{\circ},\;V=3974(l){\AA}^3$, Z=4, and $D_{calc}=1.64 g cm^{-3}$. The geometry around the central tungsten metal is a distorted octahedron, with the nitrogen and phosphorus atoms being cis to each other. Some of these complexes exhibited catalytic activities in the allylic oxidation and epoxidation of cholesterly acetate. Other oxidation products were also formed with the different chemical yields and product distribution depending upon the ligand and the central metal.

융합 차폐시트를 이용한 선량 맞춤형 에이프런 마이크로 기능성 디자인 (Dose Customized Apron Micro Functional Design Using Convergence Shielding Sheet)

  • 김선칠
    • 한국융합학회논문지
    • /
    • 제12권11호
    • /
    • pp.119-126
    • /
    • 2021
  • 본 의료기관에서 사용되는 방사선 차폐복은 납당량 0.25 mmPb를 기준으로 제시하고 있다. 그러나 신체 각 부위별 감수성을 고려하고 사용자의 활동성을 보장할 수 있는 동시에 정밀한 방어가 가능한 차폐복 제작에 대해 연구하고자 한다. 친환경 차폐 재료를 기반으로 제작하여 기존 납 Apron의 중량 문제와 환경 문제를 해결하는 동시에 두께로 납당량과 동일한 차폐성능을 제시하고자 하였다. 제작된 차폐시트의 원단은 납당량 0.12 mmPb부터 0.32 mmPb까지 차폐시트의 두께로 조절하는 카렌더 공정을 통해 제작하였다. 각 신체 부위별 감수성을 고려한 차폐복을 제작하여 의료기관에서 상시 착용하고 있는 대상자를 통해 사용성평가를 실시하였다. 차폐복을 착용한 후 활동성이 좀 더 증가하였다는 의견이 많았으며, 무게는 0.26kg을 줄였다. 향후에는 의료기관의 종사자의 활동성을 고려한 차폐복 디자인 개선 노력이 필요할 것으로 사료된다.

3Y-TZP/WC 복합체의 소결 방식에 따른 특성비교 (Comparison of Properties with Different Sintering Process of 3Y-TZP/WC Composites)

  • 남민수;최재형;남산;김성원
    • 한국분말재료학회지
    • /
    • 제29권5호
    • /
    • pp.424-431
    • /
    • 2022
  • 3Y-TZP ceramics obtained by doping 3 mol.% of Y2O3 to ZrO2 to stabilize the phase transition are widely used in the engineering ceramic industry due to their excellent mechanical properties such as high strength, fracture toughness, and wear resistance. An additional increase in mechanical properties is possible by manufacturing a composite in which a high-hardness material such as oxide or carbide is added to the 3Y-TZP matrix. In this study, composite powder was prepared by dispersing a designated percentage of WC in the 3Y-TZP matrix, and the results were compared after manufacturing the composite using the different processes of spark plasma sintering and HP. The difference between the densification behavior and porosity with the process mechanism was investigated. The correlation between the process conditions and phase formation was examined based on the crystalline phase formation behavior. Changes to the microstructure according to the process conditions were compared using field-emission scanning electron microscopy. The toughness-strengthening mechanism of the composite with densification and phase formation was also investigated.

증착 후 전자빔 조사에 따른 IWO 박막의 전기적, 광학적 특성 개선 효과 (Enhanced Electrical and Optical Properties of IWO Thin Films by Post-deposition Electron Beam Irradiation)

  • 최재욱;허성보;이연학;김대일
    • 열처리공학회지
    • /
    • 제36권5호
    • /
    • pp.298-302
    • /
    • 2023
  • Transparent and conducting tungsten (W) doped indium oxide (IWO) thin films were deposited on the glass substrate by using RF magnetron sputtering and then electron irradiation was conducted to investigate the effect of electron irradiation on the optical and electrical properties of the films. The electron irradiated films showed three x-ray diffraction peaks of the In2O3 (222), (431) and (046) planes and the full width at half maximum values are decreased as increased electron irradiation energy. In the atomic force microscope analysis, the surface roughness of as deposited films was 1.70 nm, while the films electron irradiated at 700 eV, show a lower roughness of 1.28 nm. In this study, the figure of merit (FOM) of as deposited films is 2.07 × 10-3-1, while the films electron irradiated at 700 eV show the higher FOM value of 5.53 × 10-3-1. Thus, it is concluded that the post-deposition electron beam irradiation is the one of effective methods to enhance optical and electrical performance of IWO thin films.

Hydrogen-bonded clusters in transformed Lewis acid to new Brønsted acid over WOx/SiO2 catalyst

  • Boonpai, Sirawat;Wannakao, Sippakorn;Panpranot, Joongjai;Praserthdam, Supareak;Chirawatkul, Prae;Praserthdam, Piyasan
    • Advances in nano research
    • /
    • 제12권3호
    • /
    • pp.291-300
    • /
    • 2022
  • The behavior of hydrogen species on the surface of the catalyst during the Lewis acid transformation to form Brønsted acid sites over the spherical silica-supported WOx catalyst was investigated. To understand the structure-activity relationship of Lewis acid transformation and hydrogen bonding interactions, we explore the potential of using the in situ diffuse reflection infrared Fourier transform spectroscopy (DRIFTS) with adsorbed ammonia and hydrogen exposure. From the results of in situ DRIFTS measurements, Lewis acid sites on surface catalysts were transformed into new Brønsted acid sites upon hydrogen exposure. The adsorbed NH3 on Lewis acid sites migrated to Brønsted acid sites forming NH4+. The results show that the dissociated H atoms present on the catalyst surface formed new Si-OH hydroxyl species - the new Brønsted acid site. Besides, the isolated Si-O-W species is the key towards H-bond and Si-OH formation. Additionally, the H atoms adsorbed surrounding the Si-O-W species of mono-oxo O=WO4 and di-oxo (O=)2WO2 species, where the Si-O-W species are the main species presented on the Inc-SSP catalysts than that of the IWI-SSP catalysts.

Rich Se Nanoparticles Modified Mo-W18O49 as Enhanced Electrocatalyst for Hydrogen Evolution Reaction

  • Wang, Jun Hui;Tang, Jia-Yao;Fan, Jia-Yi;Meng, Ze-Da;Zhu, Lei;Oh, Won-Chun
    • 한국재료학회지
    • /
    • 제32권2호
    • /
    • pp.57-65
    • /
    • 2022
  • Herein a rich, Se-nanoparticle modified Mo-W18O49 nanocomposite as efficient hydrogen evolution reaction catalyst is reported via hydrothermal synthesized process. In this work, Na2SeSO3 solution and selenium powder are used as Se precursor material. The structure and composition of the nanocomposites are characterized by X-ray diffraction (XRD), high-resolution field emission scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), EDX spectrum analysis and the corresponding element mapping. The improved electrochemical properties are studied by current density, and EIS analysis. The as-prepared Se modified Mo-W18O49 synthesized via Na2SeSO3 is investigated by FE-SEM analysis and found to exhibit spherical particles combined with nanosheets. This special morphology effectively improves the charge separation and transfer efficiency, resulting in enhanced photoelectric behavior compared with that of pure Mo-W18O49. The nanomaterial obtained via Na2SeSO3 solution demonstrates a high HER activity and low overpotential of -0.34 V, allowing it to deliver a current density of 10 mA cm-2.

기판 인가 전압에 따른 IWO 박막의 전기적, 광학적 특성 (Influence of Substrate Bias Voltage on the Electrical and Optical Properties of IWO Thin Films)

  • 최재욱;이연학;박민성;공영민;김대일
    • 한국재료학회지
    • /
    • 제33권9호
    • /
    • pp.372-376
    • /
    • 2023
  • Transparent conductive tungsten (W) doped indium oxide (In2O3; IWO) films were deposited at different substrate bias voltage (-Vb) conditions at room temperature on glass substrates by radio frequency (RF) magnetron sputtering and the influence of the substrate bias voltage on the optical and electrical properties was investigated. As the substrate bias voltage increased to -350 Vb, the IWO films showed a lower resistivity of 2.06 × 10-4 Ωcm. The lowest resistivity observed for the film deposited at -350 Vb could be attributed to its higher mobility, of 31.8 cm2/Vs compared with that (6.2 cm2/Vs) of the films deposited without a substrate bias voltage (0 Vb). The highest visible transmittance of 84.1 % was also observed for the films deposited at the -350 Vb condition. The X-ray diffraction observation indicated the IWO films deposited without substrate bias voltage were amorphous phase without any diffraction peaks, while the films deposited with bias voltage were polycrystalline with a low In2O3 (222) diffraction peak and relatively high intensity (431) and (046) diffraction peaks. From the observed visible transmittance and electrical properties, it is concluded that the opto-electrical performance of the polycrystalline IWO film deposited by RF magnetron sputtering can be enhanced with effective substrate bias voltage conditions.