DOI QR코드

DOI QR Code

Dose Customized Apron Micro Functional Design Using Convergence Shielding Sheet

융합 차폐시트를 이용한 선량 맞춤형 에이프런 마이크로 기능성 디자인

  • Kim, Seon-Chil (Department of Biomedical Engineering, School of Medicine, Keimyung University)
  • 김선칠 (계명대학교 의용공학과)
  • Received : 2021.10.05
  • Accepted : 2021.11.20
  • Published : 2021.11.28

Abstract

Radiation shielding clothing for medical institutions is used based on lead equivalent of 0.25 mmPb. However, this study intends to study the shielding suit that can guarantee the user's activity while considering the sensitivity of each part of the body. By manufacturing based on eco-friendly shielding material, it was attempted to solve the weight problem and environmental problem of existing lead aprons, and to present the same shielding performance as lead equivalent in thickness. The fabric of the produced shielding sheet was manufactured through a calendar process that adjusts the thickness of the shielding sheet from lead equivalent 0.12 mmPb to 0.32 mmPb. In addition, the usability evaluation of the manufactured shielding clothes was conducted for the subjects who were workers in medical institutions. As a result, the activity became easier and the weight was reduced by 0.26 kg. In the future, it is thought that it is necessary to improve the shielding suit design considering the activity.

본 의료기관에서 사용되는 방사선 차폐복은 납당량 0.25 mmPb를 기준으로 제시하고 있다. 그러나 신체 각 부위별 감수성을 고려하고 사용자의 활동성을 보장할 수 있는 동시에 정밀한 방어가 가능한 차폐복 제작에 대해 연구하고자 한다. 친환경 차폐 재료를 기반으로 제작하여 기존 납 Apron의 중량 문제와 환경 문제를 해결하는 동시에 두께로 납당량과 동일한 차폐성능을 제시하고자 하였다. 제작된 차폐시트의 원단은 납당량 0.12 mmPb부터 0.32 mmPb까지 차폐시트의 두께로 조절하는 카렌더 공정을 통해 제작하였다. 각 신체 부위별 감수성을 고려한 차폐복을 제작하여 의료기관에서 상시 착용하고 있는 대상자를 통해 사용성평가를 실시하였다. 차폐복을 착용한 후 활동성이 좀 더 증가하였다는 의견이 많았으며, 무게는 0.26kg을 줄였다. 향후에는 의료기관의 종사자의 활동성을 고려한 차폐복 디자인 개선 노력이 필요할 것으로 사료된다.

Keywords

Acknowledgement

This work was supported by Radiation Technology R&D program through the National Research Foundation of Korea funded by the Ministry of Science and ICT(2020M2C8A1056950).

References

  1. K. Yue, W. Luo, X. Dong, C. Wang, G. Wu, M. Jiang & Y. Zha. (2009). A new lead-free radiation shielding material for radiotherapy. Radiation Protection Dosimetry, 133(4), 256-260. DOI : 10.1093/rpd/ncp053
  2. S. C. Kim. (2020). Effects of laminated structure and fiber coating on tensile strength of radiation shielding sheet. Journal of the Korea Convergence Society, 11(6), 83-88. DOI : 10.15207/JKCS.2020.11.6.000
  3. H. Lu., C. Boyd & J. Dawson. (2019). Lightweight Lead Aprons: The Emperor's New Clothes in the Angiography Suite?. European Journal of Vascular and Endovascular Surgery, 57(5), 730-739. DOI : 10.1016/j.ejvs.2019.01.031
  4. S. Kumar, L. Moro & Y. Narayan. (2004). Perceived Physical Stress at Work and Musculoskeletal Discomfort in X-ray Technologists. Ergonomics, 47(2), 189-201. DOI : 10.1080/00140130310001617958
  5. H. M. Soylu, F. Yurt Lambrecht & O. A. Ersoz. (2015). Gamma radiation shielding efficiency of a new lead-free composite material. Journal of Radioanalytical and Nuclear Chemistry. 305(2), 529-534. DOI : 10.1007/s10967-015-4051-3
  6. Korean Standards Association. (2017). Testing method of lead equivalent for X-ray protective devices. KSA 4025 (2017).
  7. Y. I. Jang, S. Y. Ye & J. H. Kim. (2015). Evaluation of the Apron Effectiveness during Handling Radiopharmaceuticals in PET/CT Work Environment. Journal of Radiological Science and Technology, 38(3), 237-244. DOI : 10.17946/JRST.2015.38.3.07
  8. D. Gupta. (2011). Functional clothing- Definition and classification. Indian Journal of Fibre & Textile Research, 36(4), 321-326.
  9. A. Majumdar & S. P. Singh. (2011). Modelling, optimization and decision making techniques in designing of functional clothing. Indian Journal of Fibre & Textile Research, 36(4), 398-409.
  10. P. Rajaranman, M. Hauptmann, S. Bouffler & A. Wojcik. (2018). Wojcik. Human individual radiation sensitivity and prospects for prediction. Ann ICRP, 47(3-4), 126-141. DOI : 10.1177/0146645318764091
  11. W. Y. Park, W. D. Kim & K. S. Min. (1998). Correlation Between the Parameters of Radiosensitivity in Human Cancer Cell Lines. The Korean Society for Radiation Oncology, 16(2), 99-106.
  12. T. H. Kim, S. W. Hong, N. S. Woo, H. K. Kim & J. H. Kim. (2017). The radiation safety education and the pain physicians' efforts to reduce radiation exposure. Korean J Pain, 30(2), 104-15. DOI : 10.3344/kjp.2017.30.2.104
  13. C. S. Lee, C. I. Lee, E. Y. Han & W. E. Bolch. (2007). Consideration of the ICRP 2006 revised tissue weighting factors on age-dependent values of the effective dose for external photons. Physics in Medicine and BioloThe 2007 Recommendations of the Internatgy, 52(1), 41-58. DOI : 10.1088/0031-9155/52/1/004
  14. ICRP Publication 103, ional Commission on Radiological Protection (2007).
  15. D. H. Jang & S. K. Cho. (2017). Is the Mid-point of a Likert-type Scale Necessary?: Comparison between the Scales With or Without the Mid-point, The Korean Assosiation For Survey Research, 17(4), 1-24. DOI : 10.20997/SR.18.4.1
  16. C. H. Lawshe. (1975). A quantitative approach to content validity. Personnel Psychology, 28(4), 563-575. DOI : 10.1111/j.1744-6570.1975.tb01393.x
  17. J. Nielsen & T. K. Landauer. (1993). A mathematical model of the finding of usability problems. Proceedings of the Interact '93 & Chi '93 Conference: Human Factors in Computing Systems, 5(1), 206-213. DOI : 10.1145/169059.169166
  18. B. Sullivan. (2000). Designing Web Usability: The Practice of Simplicity. Technical Communication, 47(3), 411-413. DOI : 10.1145/169059.169166
  19. L. J. Cronbach. (1949). Essentials of Psychological Testing. 5th ed. New York : Harper e Brothers.
  20. N. J. AbuAlRoos, M. N. Azman, N. A. B. Amin & R. Zainon. (2020). Tungsten-based material as promising new lead-free gamma radiation shielding material in nuclear medicine. Physica Medica, 78, 48-57. DOI : 10.1016/j.ejmp.2020.08.017